Tuesday April 24, 2018
Home India Indian Ocean ...

Indian Ocean Warming leads to change in the Rainfall Pattern and Groundwater Storage in India

0
//
55
Monsoon Clouds,. Wikimedia
Republish
Reprint

Kolkata, Jan 10, 2017:  The changing rainfall pattern, which is linked to the warming of the Indian Ocean, is the key factor driving changes in groundwater storage in India. This is reported by a new study led by the Indian Institute of Technology (IIT) in Gandhinagar.

Published in the journal Nature Geoscience in January, the study shows that changing monsoon patterns “which are tied to higher temperatures in the Indian Ocean” are an “even greater driver of change” in groundwater storage than the pumping of groundwater for agriculture.

“Groundwater plays a vital role in food and water security in India. Sustainable use of groundwater resources for irrigation is the key for future food grain production,” said study leader Vimal Mishra, of IIT Gandhinagar. “And with a fast-growing population, managing groundwater sustainability is becoming even more important.

The linkage between monsoon rainfall and groundwater can suggest ways to enhance groundwater recharge in India and especially in the regions where rainfall has been declining, such as the Indo-Gangetic Plain,” he added. Groundwater withdrawals in the country have increased over ten-fold since the 1950s, from 10-20 cubic kms per year in 1950 to 240-260 cubic kms per year in 2009. And satellite measurements have shown major decline in groundwater storage in some parts of the country, particularly in northern India, the study notes.

“This study adds another dimension to the existing water management framework. We need to consider not just the withdrawals, but also the deposits in the system,” said Yoshihide Wada, co-author and the deputy director of the Water programme at the International Institute for Applied Systems Analysis in Austria.

By looking at water levels in wells around the country, the researchers could track groundwater replenishment following the monsoon. In addition, the researchers found that the monsoon precipitation is correlated with Indian Ocean temperature, a finding which could potentially help to improve precipitation forecasts and aid in water resource planning.

“Weather is uncertain by nature, and the impacts of climate change are extremely difficult to predict at a regional level. But our research suggests that we must focus more attention on this side of the equation if we want to sustain manage water resources for the future”, Wada added. (IANS)

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

Arctic permafrost may unleash carbon within decades: NASA

Plants remove carbon dioxide from the air during photosynthesis, so increased plant growth means less carbon in the atmosphere

0
//
31
NASA to release two missions focused on moon soon in 2022. Pixabay
NASA positive about next planet-hunting mission. Pixabay
  • Permafrost in Northern Arctic can potentially become a permanent source of Carbon
  • It was previously thought to be safe from the effects of Global Warming
  • Rising temperature in the Arctic can cause severe carbon emissions

Permafrost in the coldest northern Arctic — formerly thought to be at least temporarily shielded from global warming by its extreme environment — could thaw enough to become a permanent source of carbon to the atmosphere in a few decades, warns a NASA-led study. This will happen in this century, with the peak transition occurring in 40 to 60 years, said the study.

Permafrost in Northern Arctic can become a permanent source of carbon in this century itself, according to NASA. Wikimedia Commons
Permafrost in Northern Arctic can become a permanent source of carbon in this century itself, according to NASA. Wikimedia Commons

Permafrost is soil that has remained frozen for years or centuries under topsoil. It contains carbon-rich organic material, such as leaves, that froze without decaying, NASA said in a statement on Tuesday.

As rising Arctic air temperatures cause permafrost to thaw, the organic material decomposes and releases its carbon to the atmosphere in the form of the greenhouse gases carbon dioxide and methane.

The researchers calculated that as thawing continues, by the year 2300, total carbon emissions from the coldest northern Arctic will be 10 times as much as all human-produced fossil fuel emissions in 2016.

Warmer, more southerly permafrost regions will not become a carbon source until the end of the 22nd century, even though they are thawing now, said the study led by scientist Nicholas Parazoo of NASA’s Jet Propulsion Laboratory in Pasadena, California.

That is because other changing Arctic processes will counter the effect of thawing soil in these regions.

The finding that the colder region would transition sooner than the warmer one came as a surprise, according to Parazoo. The researchers used data on soil temperatures in Alaska and Siberia and a numerical model that calculates changes in carbon emissions as plants grow and permafrost thaws in response to climate change.

They assessed when the Arctic will transition to a carbon source instead of the carbon-neutral area it is today — with some processes removing about as much carbon from the atmosphere as other processes emit.

World is under threat due to Global Warming. Wikimedia Commons

They divided the Arctic into two regions of equal size, a colder northern region and a warmer, more southerly belt encircling the northern region. There is far more permafrost in the northern region than in the southern one.

Over the course of the model simulations, northern permafrost lost about five times more carbon per century than southern permafrost.

The southern region transitioned more slowly in the model simulations, Parazoo said, because plant growth increased much faster than expected in the south.

Also Read: Global warming portends ill for India’s flourishing Dairy sector: Experts

Plants remove carbon dioxide from the air during photosynthesis, so increased plant growth means less carbon in the atmosphere.

According to the model, as the southern Arctic grows warmer, increased photosynthesis will balance increased permafrost emissions until the late 2100s. IANS