Indian origin scientist develops a device that predicts solar storms in advance

On August 31, 2012 a long filament of solar material that had been hovering in the sun's atmosphere, the corona, erupted out into space at 4:36 p.m. EDT. The coronal mass ejection, or CME, traveled at over 900 miles per second. The CME did not travel directly toward Earth, but did connect with Earth's magnetic environment, or magnetosphere, causing aurora to appear on the night of Monday, September 3.  This is a a lighten blended version of the 304 and 171 angstrom wavelengths. Credit: NASA/GSFC/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

An Indian-origin scientist has built a novel device that can predict large solar storms more than 24 hours in advance and save systems on the Earth from the coronal mass ejections (CMEs).

Neel Savani, visiting researcher at Imperial College London and space scientist at NASA, developed the new measurement and modelling tool that takes a closer look at where mass ejections are originated from on the Sun and makes use of a range of observatories to track and model the evolution of the cloud.

Currently, satellites can only tell with any certainty the orientation of a mass ejection’s magnetic field when it is relatively close to the Earth, giving just 30-60 minutes’ notice.

These mass ejections can cause problems with GPS technology which is used by all kinds of vehicles, from cars to aircraft systems.

“As we become more entwined with technology, disruption from large space weather events affects our daily lives more and more. Breaking through that 24-hour barrier to prediction is crucial for dealing efficiently with any potential problems before they arise,” Savani explained.

Coronal mass ejections (CMEs) are eruptions of gas and magnetised material from the Sun that have the potential to wreak havoc on satellites and earth-bound technologies, disrupting radio transmissions and causing transformer blowouts and blackouts.

Dr Savani and his colleagues have tested the model on eight previous mass ejections with the results showing great promise at improving the current forecasting system for large Earth-directed solar storms.

Previously, forecasts relied on measuring the initial CME eruption but were not efficient in modelling what happened between this and the cloud’s arrival at the Earth.

If further testing at NASA supports these initial results, the system could soon be used by the National Oceanic and Atmospheric Administration (NOAA) in the US and the Met Office in the UK for geomagnetic storm predictions.

The paper appeared in the journal Space Weather.