Thursday November 21, 2019

Researchers Develop AI-enabled Tool to Detect Heart Attacks

It was found that compared to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not

0
//
A commonly used drug for treating osteoporosis or bone pain may also help reduce the risk of death by cardiovascular, heart attack and stroke, according to a study.
Heart Attack risk can be decreased by drug of osteoporosis. Pixabay

Researchers have developed an Artificial Intelligence-enabled tool which uses Machine Learning (ML) algorithms that will soon play a critical role in predicting heart attacks and other cardiac issues.

The Coronary Computed Tomography Arteriography (CCTA) gives highly detailed images of the heart vessels and is a promising tool for refining risk assessment, said researchers in the study published in the journal Radiology.

While earlier tools like the Coronary Artery Disease Reporting and Data System (CAD-RADS) emphasise on stenoses or blockages and narrowing in the coronary arteries, CCTA shows more than just stenoses.

“While CAD-RADS is an important and useful development in the management of cardiac patients, its focus on stenoses may leave out important information about the arteries,” said study lead author Kevin M. Johnson, Associate Professor at the Yale University.

Heart
The study compared people aged 41-50 years and 40 or younger heart attack survivors and found that among patients who suffer a heart attack at a young age overall is 40 or younger. VOA

The ML algorithm is able to pull out patterns in the data and predict that patients with certain patterns are more likely to have an adverse event like a heart attack than patients with other patterns.

For the study, the research team compared the ML approach with CAD-RADS and other vessel scoring systems in nearly 7,000 patients. They followed the patients for an average of nine years after CCTA.

Also Read: Indians Seek Personalized Customer Experiences The Most, Says a New Study by Adobe

It was found that compared to CAD-RADS and other scores, the ML approach better discriminated which patients would have a cardiac event from those who would not.

“The risk estimate that you get from doing the Machine Learning version of the model is more accurate than the risk estimate you’re going to get if you rely on CAD-RADS,” Johnson said. (IANS)

Next Story

This AI Tool Can Predict Mortality Of Heart Failure Patients

Researchers develop a tool that can predict mortality of heart failure patients

0
heart
This artificial intelligence (AI) tool can predict life expectancy in heart failure patients. Pixabay

Researchers have developed an artificial intelligence (AI) tool to predict life expectancy in heart failure patients.

The machine learning algorithm based on de-identified electronic health, records data of 5,822 hospitalised or ambulatory patients with heart failure at UC San Diego Health in the US.

“We wanted to develop a tool that predicted life expectancy in heart failure patients, there are apps where algorithms are finding out all kinds of things, like products you want to purchase,” said Avi Yagil, Professor at University of California.

“We needed a similar tool to make medical decisions. Predicting mortality is important in patients with heart failure. Current strategies for predicting risk, however, are only modestly successful and can be subjective,” Yagil added.

From this model, a risk score was derived that determined low and high risk of death by identifying eight readily available variables collected for the majority of patients with heart failure:Diastolic blood pressure, Creatinine, Blood urea nitrogen, White blood cell count, Platelets, Albumin and Red blood cell distribution.

Yagil said the newly developed model was able to accurately predict life expectancy 88 per cent of the time and performed substantially better than other popular published models.

“This tool gives us insight, for example, on the probability that a given patient will die from heart failure in the next three months or a year,” said researcher Eric Adler.

Heart failure patients
The mortality of a heart failure patient can be predicted. Pixabay

“This is incredibly valuable. It allows us to make informed decisions based on a proven methodology and not have to look into a crystal ball,” he added.

The tool was additionally tested using de-identified patient data from the University of California San Francisco and a data base derived from 11 European medical centers.

“It was successful in those cohorts as well,” said Yagil.

“Being able to repurpose our findings in independent populations is of utmost importance, thus validating our methodology and its results,” Yagil added.

Also Read-Therapy Dogs Befriend Patients in ICU

Researchers said the partnership between physicists and cardiologists was critical to developing a reliable tool and extensive knowledge and experiences from both sides proved synergetic.

The study was published in the European Journal of Heart Failure. (IANS)