Sunday January 19, 2020
Home Lead Story AI Can Help I...

AI Can Help Improve Understanding of Earth Science

Besides, the requirement for data processing and storage capacity is very high

0
//
Artificial Intelligence Bot
Artificial Intelligence Bot. Pixabay

Artificial Intelligence (AI) can significantly improve our understanding of the climate and Earth science, says a study by German scientists.

AI can be applied to data related to extreme events such as fire spreads or hurricanes, which are very complex processes influenced by local conditions.

It can also be applied to atmospheric and ocean transport, soil movement and vegetation dynamics data — some of the classic topics of Earth system science.

“From a plethora of sensors, a deluge of Earth system data has become available, but so far we’ve been lagging behind in analysis and interpretation,” said Markus Reichstein of the Max Planck Institute for Biogeochemistry in Jena, Germany.

“This is where deep learning techniques become a promising tool, beyond classical machine learning applications such as image recognition, natural language processing or AlphaGo,” added co-author Joachim Denzler, from the Friedrich Schiller University in Jena (FSU).

Artificial Intelligence can help to improve understanding of Earth Science.

However, deep learning approaches are difficult. All data-driven and statistical approaches do not guarantee physical consistency per se, are highly dependent on data quality, and may experience difficulties with extrapolations, according to the study published in the journal Nature.

Besides, the requirement for data processing and storage capacity is very high.

Also Read- Twitterati Can Soon Clarify Tweets: CEO Jack Dorsey

If both techniques are brought together, so-called hybrid models are created. They can, for example, be used for modelling the motion of ocean water to predict sea surface temperature. While the temperatures are modelled physically, the ocean water movement is represented by a machine learning approach.

“The idea is to combine the best of two worlds, the consistency of physical models with the versatility of machine learning, to obtain greatly improved models,” Reichstein explained. (IANS)

Next Story

AI-based Google Model Beats Humans in Detecting Breast Cancer

This work, said Google, is the latest strand of its research looking into detection and diagnosis of breast cancer, not just within the scope of radiology, but also pathology

0
Google, smart compose
The Google name is displayed outside the company's office in London, Britain. VOA

In a ray of hope for those who have to go for breast cancer screening and even for healthy women who get false alarms during digital mammography, an Artificial Intelligence (AI)-based Google model has left radiologists behind in spotting breast cancer by just scanning the X-ray results.

Reading mammograms is a difficult task, even for experts, and can often result in both false positives and false negatives.

In turn, these inaccuracies can lead to delays in detection and treatment, unnecessary stress for patients and a higher workload for radiologists who are already in short supply, Google said in a blog post on Wednesday.

Google’s AI model spotted breast cancer in de-identified screening mammograms (where identifiable information has been removed) with greater accuracy, fewer false positives and fewer false negatives than experts.

“This sets the stage for future applications where the model could potentially support radiologists performing breast cancer screenings,” said Shravya Shetty, Technical Lead, Google Health.

Digital mammography or X-ray imaging of the breast, is the most common method to screen for breast cancer, with over 42 million exams performed each year in the US and the UK combined.

“But despite the wide usage of digital mammography, spotting and diagnosing breast cancer early remains a challenge,” said Daniel Tse, Product Manager, Google Health.

Together with colleagues at DeepMind, Cancer Research UK Imperial Centre, Northwestern University and Royal Surrey County Hospital, Google set out to see if AI could support radiologists to spot the signs of breast cancer more accurately.

The findings, published in the journal Nature, showed that AI could improve the detection of breast cancer.

artificial intelligence, nobel prize
“Artificial intelligence is now one of the fastest-growing areas in all of science and one of the most talked-about topics in society.” VOA

Google AI model was trained and tuned on a representative data set comprised of de-identified mammograms from more than 76,000 women in the UK and more than 15,000 women in the US, to see if it could learn to spot signs of breast cancer in the scans.

The model was then evaluated on a separate de-identified data set of more than 25,000 women in the UK and over 3,000 women in the US.

“In this evaluation, our system produced a 5.7 per cent reduction of false positives in the US, and a 1.2 per cent reduction in the UK. It produced a 9.4 per cent reduction in false negatives in the US, and a 2.7 per cent reduction in the UK,” informed Google.

The researchers then trained the AI model only on the data from the women in the UK and then evaluated it on the data set from women in the US.

In this separate experiment, there was a 3.5 per cent reduction in false positives and an 8.1 per cent reduction in false negatives, “showing the model’s potential to generalize to new clinical settings while still performing at a higher level than experts”.

Notably, when making its decisions, the model received less information than human experts did.

The human experts (in line with routine practice) had access to patient histories and prior mammograms, while the model only processed the most recent anonymized mammogram with no extra information.

Also Read: Bollywood Celebrities Enjoying the Holiday Season

Despite working from these X-ray images alone, the model surpassed individual experts in accurately identifying breast cancer.

This work, said Google, is the latest strand of its research looking into detection and diagnosis of breast cancer, not just within the scope of radiology, but also pathology.

“We’re looking forward to working with our partners in the coming years to translate our machine learning research into tools that benefit clinicians and patients,” said the tech giant. (IANS)