Saturday January 25, 2020

Air Pollution Linked to 3.2 Million New Diabetes Cases in One Year

Nearly 10 million years of healthy life were lost in 2016 due to pollution-linked diabetes, representing about 14 per cent of all years of healthy life lost due to diabetes from any cause

0
//
Air Pollution
Delhi air pollution again reaches 'severe' levels. Pixabay

Outdoor air pollution even at levels deemed safe may be associated with an increased risk of diabetes globally, with India being at a greater risk due to lack of air cleaning policies, scientists said in a report in Lancet.

The findings showed that air pollution contributes to development of diabetes by reducing insulin production and triggering inflammation, which prevents the body from converting blood glucose into energy that the body needs.

The overall risk of pollution-related diabetes is tilted more toward lower-income countries such as India that lack the resources for environmental mitigation systems and clean-air policies, Lancet Planetary Health report said.

“Our research shows a significant link between air pollution and diabetes globally,” said Ziyad Al-Aly, from the University of Washington in St. Louis, US.

“We found an increased risk, even at low levels of air pollution currently considered safe by the US Environmental Protection Agency (EPA) and the World Health Organization (WHO).

“This is important because many industry lobbying groups argue that current levels are too stringent and should be relaxed. Evidence shows that current levels are still not sufficiently safe and need to be tightened,” Aly explained.

Representational image.
Representational image. Pixabay

The researchers estimated that pollution contributed to a little more than three million new diabetes cases globally in 2016, which represented about 14 per cent of all new diabetes cases globally that year.

Nearly 10 million years of healthy life were lost in 2016 due to pollution-linked diabetes, representing about 14 per cent of all years of healthy life lost due to diabetes from any cause.

According to the UN 2018 Sustainable Development Goals Report, an estimated 4.2 million people died as a result of high levels of ambient air pollution.

Also Read: Eat Walnuts to Ward off Diabetes Risk

In the study, the team analysed data from more than one million participants without a history of diabetes, who were followed for a median of eight and a half years.

They also looked at particulate matters, airborne microscopic pieces of dust, dirt, smoke, soot and liquid droplets.

Poverty-stricken countries facing a higher diabetes-pollution risk include Afghanistan, Papua New Guinea and Guyana, while richer countries such as France, Finland and Iceland experience a lower risk, the study said. (IANS)

Next Story

Drugs That Treat Arthritis in Dogs Can Kill Cancer Cells: Study

Drug for arthritis in dogs can fight cancer in people

0
Cancer Cells
Drugs for diabetes, inflammation, alcoholism and even for treating arthritis in dogs can also kill cancer cells. Pixabay

Drugs for diabetes, inflammation, alcoholism — and even for treating arthritis in dogs — can also kill cancer cells in the lab, according to a new health news and study.

The researchers systematically analysed thousands of already developed drug compounds and found nearly 50 that have previously unrecognised anti-cancer activity.

The findings, which also revealed novel drug mechanisms and targets, suggest a possible way to accelerate the development of new cancer drugs or repurpose existing drugs to treat cancer.

“We thought we’d be lucky if we found even a single compound with anti-cancer properties, but we were surprised to find so many,” said study researcher Todd Golub from Harvard University in the US.

Cancer Cells
Most of the non-oncology drugs that killed cancer cells in the study did so by interacting with a previously unrecognized molecular target. (Representational Image). Pixabay

The study, published in the journal Nature Cancer, yet to employ the Broad’s Drug Repurposing Hub, a collection that currently comprises more than 6,000 existing drugs and compounds that are either FDA-approved or have been proven safe in clinical trials (at the time of the study, the Hub contained 4,518 drugs).

Historically, scientists have stumbled upon new uses for a few existing medicines, such as the discovery of aspirin’s cardiovascular benefits.

“We created the repurposing hub to enable researchers to make these kinds of serendipitous discoveries in a more deliberate way,” said study first author Steven Corsello, from Dana-Farber Cancer Institute and founder of the Drug Repurposing Hub.

The researchers tested all the compounds in the Drug Repurposing Hub on 578 human cancer cell lines from the Broad’s Cancer Cell Line Encyclopedia (CCLE).

Using a molecular barcoding method known as PRISM, which was developed in the Golub lab, the researchers tagged each cell line with a DNA barcode, allowing them to pool several cell lines together in each dish and more quickly conduct a larger experiment.

The team then exposed each pool of barcoded cells to a single compound from the repurposing library, and measured the survival rate of the cancer cells.

They found nearly 50 non-cancer drugs — including those initially developed to lower cholesterol or reduce inflammation — that killed some cancer cells while leaving others alone.

Some of the compounds killed cancer cells in unexpected ways.

“Most existing cancer drugs work by blocking proteins, but we’re finding that compounds can act through other mechanisms,” said Corsello.

Cancer Cells
The researchers tested all the compounds in the Drug Repurposing Hub on 578 human cancer cells lines from the Broad’s Cancer Cell Line Encyclopedia. (Representational Image). Pixabay

Some of the four-dozen drugs researchers identified appear to act not by inhibiting a protein but by activating a protein or stabilising a protein-protein interaction.

For example, the team found that nearly a dozen non-oncology drugs killed cancer cells that express a protein called PDE3A by stabilising the interaction between PDE3A and another protein called SLFN12 — a previously unknown mechanism for some of these drugs.

These unexpected drug mechanisms were easier to find using the study’s cell-based approach, which measures cell survival, than through traditional non-cell-based high-throughput screening methods, Corsello said.

Also Read- Mothers Find Gaps in Accessibility of Breastfeeding Resources at Work: Research

Most of the non-oncology drugs that killed cancer cells in the study did so by interacting with a previously unrecognized molecular target.

For example, the anti-inflammatory drug tepoxalin, originally developed for use in people but approved for treating osteoarthritis in dogs, killed cancer cells by hitting an unknown target in cells that overexpress the protein MDR1, which commonly drives resistance to chemotherapy drugs. (IANS)