Sunday October 21, 2018
Home Science & Technology Comets: The h...

Comets: The harbingers of life on earth?

0
//
34
Republish
Reprint

 

Rosetta

 

By K.S.Jayaraman

Bengaluru: Did a comet strike jump-start life on Earth? The findings of the European Space Agency’s Rosetta Mission tend to suggest this possibility.

An instrument on board the Philae Lander of Rosetta Mission has identified 16 organic molecules on the surface of a comet that are potentially “prebiotic”, or necessary for life, the mission scientists have reported in a recent issue of the journal Science.

“These are the first organic molecules to be ever reported directly, from in-situ analyses, from the surface of a comet,” Chaitanya Giri, a co-investigator of Cometary Sampling and Composition Experiment (COSAC) of the Rosetta Mission and one of the authors, told IANS.

On November 12, 2014, Philae Lander became the first space probe to soft land on the surface of a comet called 67P/Churyumov-Gerasimenko. Besides COSAC, Philae carried several scientific experiments on board, with each trying to decipher the nature of the comet.

COSAC – which is a gas chromatography-mass spectrometer – aimed to study the surface ‘organic’ chemical composition of the comet, said Giri, a post-doctoral research scientist in the Department of Planets and Comets at the Max Planck Institute for Solar System Research (MPS) in Gottingen, Germany.

According to the report, the Philae Lander bounced off the comet’s surface multiple times after the touchdown before coming to rest. The dust cloud kicked up from the bounces entered the COSAC instrument, which analysed the dust. “The entire COSAC team studied the mass spectra data generated by it,” Giri said.

The COSAC team, led by Fred Goesmann, involved scientists from France, Germany, Ireland, the Netherlands, Spain, Switzerland and the United States. Giri, the only Indian on board, has been part of the team for the past five years in various capacities, beginning as a trainee doctoral student.

According to the Science report, as many as 16 molecules were identified by the experiment. Twelve of these had been reported earlier from remote ground-based telescopes and fly-by missions whereas COSAC has reported four novel molecules that have never been reported earlier, Giri said.

These new molecules are acetamide, methyl isocyanate, propionaldehyde and acetone. Other re-reported molecules include hydrogen cyanide, formamide and glycolaldehyde.

“All these molecules are of great significance for triggering pre-biotic chemistry – the precursor processes towards the formation of life,” Giri said. These are the same molecules that are known to be the building blocks for the origin of life on Earth and are major constituents of known molecular biological processes, he said.

For instance, Glycolaldehyde is known to play a crucial role in the prebiotic synthesis of sugars. Hydrogen cyanide is a known and important precursor for synthesis of amino acids and nucleobases. Formamide and acetamide are known to play a crucial act in the formation of nucleobases and phosphorylation of nucleosides to nucleotides. Within their chemical structure they also contain the so-called “CONH” bond that is the only known way to polymerize amino acids into peptides and further into proteins.

“For centuries, comets have been regarded as omens of destruction,” Giri said. “Our findings have revolutionized human perception of comets. The COSAC-reported potentially prebiotic molecules now point to the likely role of comets as harbingers of life on Earth.”

However, many important questions yet remain unanswered and further exploration of comets and other small bodies is indicated, he added.

“Rosetta is an icon of international co-operation, public support and state-of-the-art science and technology. Such missions are crucial prerequisites for human advancement in outer space. The knowledge gained through Rosetta urges us to explore even further,” he said.

(IANS)

Click here for reuse options!
Copyright 2015 NewsGram

Next Story

Habitability Of Surrounding Planets Affected By Super Flares Of Red Dwarfs: NASA

Red dwarfs -- especially young red dwarfs -- are active stars, producing flares blast out energy

0
NASA, space, red dwarf
Superflares from red dwarfs may affect habitability of planets Pixabay

Using NASA’s Hubble Space Telescope, astronomers have found that violent outbursts, or superflares, from red dwarf stars could affect the habitability of any planets orbiting it.

Young low-mass stars flare much more frequently and more energetically than old stars and middle-age stars like our Sun, the findings of the study published in the Astrophysical Journal showed.

The findings are based on observations of the flare frequency of 12 red dwarfs.

Hubble is observing such stars through a large programme called HAZMAT — Habitable Zones and M dwarf Activity across Time.

“M dwarf” is the astronomical term for a red dwarf star — the smallest, most abundant and longest-living type of star in our galaxy.

Hubble Telescope. red dwarf
Hubble Telescope. Flickr

The HAZMAT programme is an ultraviolet survey of red dwarfs at three different ages — young, intermediate, and old.

“The goal of the HAZMAT programme is to help understand the habitability of planets around low-mass stars,” explained the programme’s principal investigator, Evgenya Shkolnik from Arizona State University.

“These low-mass stars are critically important in understanding planetary atmospheres,” Shkolnik added.

Stellar flares from red dwarfs are particularly bright in ultraviolet wavelengths, compared with Sun-like stars.

Red dwarf  planet
Artist’s view of planets transiting red dwarf star in TRAPPIST-1 system. Flickr

Hubble’s ultraviolet sensitivity makes the telescope very valuable for observing these flares.

The flares are believed to be powered by intense magnetic fields that get tangled by the roiling motions of the stellar atmosphere.

When the tangling gets too intense, the fields break and reconnect, unleashing tremendous amounts of energy.

The team found that the flares from the youngest red dwarfs they surveyed — just about 40 million years old — are 100 to 1,000 times more energetic than when the stars are older.

This younger age is when terrestrial planets are forming around their stars.

Red dwarf
This illustration shows a red dwarf star orbited by a hypothetical exoplanet. NASA

About three-quarters of the stars in our Milky Way galaxy are red dwarfs. Most of the galaxy’s “habitable-zone” planets — planets orbiting their stars at a distance where temperatures are moderate enough for liquid water to exist on their surface — orbit red dwarfs.

In fact, the nearest star to our Sun, a red dwarf named Proxima Centauri, has an Earth-size planet in its habitable zone.

Also Read: NASA Plans For Science Payloads For Delivery To Moon

However, red dwarfs — especially young red dwarfs — are active stars, producing flares that could blast out so much energy that it disrupts and possibly strips off the atmospheres of these fledgling planets. (IANS)