Monday January 21, 2019
Home Science & Technology Tiny Diamonds...

Tiny Diamonds Can Prevent Short-Circuits and Fires in Mobile Phone Batteries: Study

Mixing nanodiamonds into the electrolyte solution of a lithium ion battery slows dendrite formation to nil through 100 charge-discharge cycles

0
//
Tiny diamonds prevent fires in phone batteries
Tiny diamonds prevent fires in phone batteries. Pixabay
  • The researchers described a process by which tiny diamonds curtail the electrochemical deposition called plating
  • We anticipate the first use of our proposed technology will be in less critical applications
  • Battery buildups called dendrites  are one of the main causes of lithium battery malfunction

USA, August 28, 2017: Researchers have found that tiny diamonds (diamond particles 10,000 times smaller than the diameter of a hair) can prevent short-circuits and fires in lithium batteries widely used in various mobile devices from smartphones to laptops.

The new process that uses tiny diamonds can turn electrolyte solution – a key component of most batteries into a safeguard against the chemical process that leads to battery-related disasters.

In the study, published in the journal Nature Communications, the researchers described a process by which tiny diamonds curtail the electrochemical deposition, called plating, that can lead to hazardous short-circuiting of lithium ion batteries.

“We anticipate the first use of our proposed technology will be in less critical applications, not in cell phones or car batteries,” said Yury Gogotsi, Professor at Drexel University Philadelphia Pennsylvania, US.

“To ensure safety, additives to electrolytes, such as nano diamonds, need to be combined with other precautions, such as using non-flammable electrolytes, safer electrode materials and stronger separators,” Gogotsi added.

Also Read: Lithium Batteries can be charged faster in the near Future: Scientists

As batteries are used and charged, the electrochemical reaction results in the movement of ions between the two electrodes of a battery, which is the essence of an electrical current.

Over time, this re-positioning of ions can create tendril-like buildups almost like stalactites forming inside a cave.

These battery buildups, called dendrites, are one of the main causes of lithium battery malfunction.

As dendrites form inside the battery over time, they can reach the point where they push through the separator, a porous polymer film that prevents the positively charged part of a battery from touching the negatively charged part.

When the separator is breached, a short-circuit can occur, which can also lead to a fire since the electrolyte solution in most lithium-ion batteries is highly flammable.

To avoid dendrite formation and minimize the probability of fire, current battery designs include one electrode made of graphite filled with lithium instead of pure lithium.

The use of graphite as the host for lithium prevents the formation of dendrites. But lithium intercalated graphite also stores about 10 times less energy than pure lithium.

The new study showed that mixing nano diamonds into the electrolyte solution of a lithium ion battery slows dendrite formation to nil through 100 charge-discharge cycles.

The finding means that a great increase in energy storage is possible because dendrite formation can be eliminated in pure lithium electrodes.

The discovery is just the beginning of a process that could eventually see electrolyte additives, like nano diamonds, widely used to produce safe lithium batteries with a high energy density, Gogotsi noted. (IANS)

Next Story

New Technology That Can Clean Water Twice As of Now

more than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world's population will be living in water-stressed areas.

0
water
Novel technology cleans water using bacteria

Researchers, led by one of Indian-origin, have developed a new technology that can clean water twice as fast as commercially available ultrafiltration membranes, an advance that brings hope for countries like India where clean drinking water is a big issue.

According to a team from the Washington University in St. Louis, more than one in 10 people in the world lack basic drinking water access, and by 2025, half of the world’s population will be living in water-stressed areas.

The team led by Srikanth Singamaneni, Professor at the varsity, developed an ultrafiltration membrane using graphene oxide and bacterial nanocellulose that they found to be highly efficient, long-lasting and environment-friendly.

The membrane technology purifies water while preventing biofouling, or build up of bacteria and other harmful micro-organisms that reduce the flow of water.

Water
The membrane technology purifies water while preventing biofouling. VOA

For the study, published in the journal Environmental Science and Technology, they used bacteria to build such filtering membranes.

The Gluconacetobacter hansenii bacteria is a sugary substance that forms cellulose nanofibres when in water.

The team then incorporated graphene oxide (GO) flakes into the bacterial nanocellulose while it was growing, essentially trapping GO in the membrane to make it stable and durable.

They exposed the membrane to E. coli bacteria, then shone light on the membrane’s surface.

After being irradiated with light for just three minutes, the E. coli bacteria died. The team determined that the membrane quickly heated to above the 70 degrees Celsius required to deteriorate the cell walls of E. coli bacteria.

While the bacteria are killed, the researchers had a pristine membrane with a high quality of nanocellulose fibres that was able to filter water twice as fast as commercially available ultrafiltration membranes under a high operating pressure.

When they did the same experiment on a membrane made from bacterial nanocellulose without the reduced GO, the E. coli bacteria stayed alive.

The new technology is capable of identifying and quantifying different kinds of cyanobacteria, or blue-green algae, as a threat to shut down water systems when it suddenly proliferates. Pixabay

While the researchers acknowledge that implementing this process in conventional reverse osmosis systems is taxing, they propose a spiral-wound module system, similar to a roll of towels.
Also Read: India Gets Assistance of Rs 3,420 Crore From Japan
It could be equipped with LEDs or a type of nanogenerator that harnesses mechanical energy from the fluid flow to produce light and heat, which would reduce the overall cost.

If the technique were to be scaled up to a large size, it could benefit many developing countries where clean water is scarce, the researchers noted. (IANS)