Tuesday August 20, 2019

First Study to Test Gene-Editing Technique to Cure Inherited Form of Blindness to Start in US

People with the disease have healthy eyes but lack a gene that converts light into signals to the brain that enable sight

0
//
gene-editing technique
FILE - A nurse practitioner prepares to start the first human gene editing treatment for Hunter syndrome, an inherited metabolic disease, at a hospital in Oakland, Calif., Nov. 13, 2017. VOA

Patients are about to be enrolled in the first study to test a gene-editing technique known as CRISPR inside the body to try to cure an inherited form of blindness. People with the disease have healthy eyes but lack a gene that converts light into signals to the brain that enable sight.

The experimental treatment aims to supply kids and adults with a healthy version of the gene they lack, using a tool that cuts or “edits” DNA in a specific spot. It’s intended as a onetime treatment that permanently alters the person’s native DNA.

ALSO READ: Study: Fungal Disease Links to Rising Global Temperatures

Two companies, Editas Medicine and Allergan, will test this in up to 18 people around the United States, including Massachusetts Eye and Ear in Boston, starting this fall. (VOA)

Next Story

Scientists Find New Ways of Tracking Objects by Combining DNA of Dust Particles

Clothing, medicine and other items in one’s environment all have genetic markers, or fingerprints, that provide clues to where they came from, according to scientists

0
dust particles, DNA
Scientists say they have new ways of tracking where clothing, medicines and other items are made, making it harder for unscrupulous businesses to sell items that don't work or violate laws. VOA

Clothing, medicine and other items in one’s environment all have genetic markers, or fingerprints, that provide clues to where they came from, according to scientists.

Researchers are analyzing the microorganisms in dust particles that land on surfaces and are using artificial intelligence to read and classify the unique genetic codes of the microbes that vary from place to place.

“It is the collection of bacteria, fungi, viruses, protozoa that are present in any environment,” said Jessica Green, microbial systems expert and co-founder of Phylagen, a company that is building a microbial map of the world. Phylagen is collecting dust from different places and turning it into data by studying the DNA of the microscopic organisms in the particles.

DNA, dust particles
This digitally colorized microscope image provided by the National Institute of Allergy and Infectious Diseases (NIAID) shows Staphylococcus aureus bacteria in yellow. Bacteria are part of the collection of microorganisms that tell scientists where an object has been. VOA

Exposing labor abuses

Phylagen says its findings will provide real world applications. The California-based company says one application involves companies that outsource the manufacturing of products, such as clothing.

According to Human Rights Watch, unauthorized subcontracting of facilities in the apparel industry occurs often, and it is in these places that some of the worse labor abuses happen.

Phylagen is digitizing the genome of different locations by working in more than 40 countries and sampling the dust in hundreds of factories. The goal is to create a database so the microbes on each product can be traced.

“We sample the DNA of the products, and then, we use machine learning algorithms to map what is on the product with the factory, and can therefore verify for brands that their goods are made by their trusted suppliers in factories where you have good labor conditions, good environmental conditions versus unauthorized facilities which can be really detrimental,” Green said.

Tracking diseases, ships

With a database of distinct microbial DNA, Green said other possible future uses could include predicting the outbreak of disease and helping law enforcement track the movement of ships, since shipping logs can be falsified. Even counterfeit medicines could be traced as the database of microbial information grows, she said.

ALSO READ: Electric Cars Can Help You Live Longer: Study

“We can sequence the DNA of seized counterfeit pills, cluster together pills that have similar microbial signatures and then use that to help both pharmaceutical companies and the government, the U.S. government, gain some intelligence about how many different sources of these manufacturing facilities are there,” Green said. (VOA)