Wednesday May 23, 2018
Home Science & Technology Ultra-High En...

Ultra-High Energy Cosmic Rays Come From Outside The Milky Way

Travelling with a speed of lights, cosmic rays are atomic nuclei. Scientist says that high energy cosmic rays coming from outer space are hitting the earth.

0
//
50
Cosmic rays
Source: Pixaby
Republish
Reprint

New York, September 24, 2017: Researchers have found that some ultra-high energy cosmic rays that occasionally hit Earth come from a distant source outside the Milky Way.

Cosmic rays are atomic nuclei that travel through space at speeds close to that of light. Low-energy cosmic rays come from the Sun or from our own galaxy, but the origin of the highest-energy particles has been the subject of debate ever since they were first discovered fifty years ago.

Do they come from our Galaxy or from distant extragalactic objects?

The study published in the journal Science demonstrated that those cosmic rays with energies a million times greater than that of the protons accelerated in the Large Hadron Collider – the world’s largest and most powerful particle accelerator – come from much further away than from our own galaxy.

They were detected from 2004 to 2016 at the largest cosmic ray observatory ever built, the Pierre Auger Observatory in Argentina.

“We are now considerably closer to solving the mystery of where and how these extraordinary particles are created — a question of great interest to astrophysicists,” said Karl-Heinz Kampert from University of Wuppertal in Germany.

“Our observation provides compelling evidence that the sites of acceleration are outside the Milky Way,” Kampert who is spokesperson for the Auger Collaboration, which involves more than 400 scientists from 18 countries, said.

Cosmic rays are the nuclei of elements from hydrogen to iron. The highest-energy cosmic rays, those of interest in this study, only strike about once per square kilometre per year — equivalent to hitting the area of a soccer field about once per century.

Such rare particles are detectable because they create showers of secondary particles — including electrons, photons and muons – as they interact with the nuclei in the atmosphere.

These cosmic ray showers spread out, sweeping through the atmosphere at the speed of light in a disc-like structure, like a dinner plate but several kilometres in diameter.

ALSO READ: NASA’s Asteroid-chasing Spacecraft Osiris-Rex Swinging by Earth on Way to Space Rock

At the Auger Observatory, the shower particles are detected through the light they produce in several of 1,600 detectors, spread over 3,000 square kilometres of western Argentina and each containing 12 tons of water.

Tracking these arrivals tells scientists the direction from which the cosmic rays came.

After racking up detections of more than 30,000 cosmic particles, the scientists found one section of the sky was producing significantly more than its share.

The probability of this happening by a random fluctuation is extremely small, the scientists said — a chance of about two in ten million.

“This result unequivocally establishes that ultra-high energy cosmic rays are not just random wanderers of our nearby universe,” Paolo Privitera of University of Chicago who heads the US groups participating in the project, said. (IANS)

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

New Study Shows That Binaries From Globular Clusters Can be Detected by LISA

The European Space Agency's next-generation Laser Interferometer Space Antenna (LISA) gravitational wave detector can potentially detect dozens of binary files in the globular clusters of the Milky Way, scientists say.

0
//
29
In particular, these models suggest that the Kuiper Belt -- a cold region beyond the orbit of Neptune -- should contain a small fraction of rocky bodies from the inner solar system, such as carbon-rich asteroids, referred to as carbonaceous asteroids.
representational image, pixabay

The European Space Agency’s next-generation Laser Interferometer Space Antenna (LISA) gravitational wave detector can potentially detect dozens of binary files in the globular clusters of the Milky Way, scientists say.

Globular clusters are dense environments containing millions of tightly packed stars and are efficient factories for gravitational wave sources.

LISA, which is expected to be in space in 2034, will be able to detect binary sources — pairs of orbiting compact objects.

These binary sources will contain all combinations of black hole, neutron star and white dwarf components.

While 150 globular clusters have been observed so far in the Milky Way, one out of every three clusters will produce a LISA source.
Representational image. Pixabay

LISA will also be sensitive to gravitational waves of a lower frequency than those detected by the Earth-bound Laser Interferometer Gravitational-Wave Observatory (LIGO)

“LISA is sensitive to Milky Way systems and will expand the breadth of the gravitational wave spectrum, allowing us to explore different types of objects that aren’t observable with LIGO,” said lead author Kyle Kremer, a doctoral student at the Northwestern University in Illinois, US.

While 150 globular clusters have been observed so far in the Milky Way, one out of every three clusters will produce a LISA source.

Approximately eight black hole binaries will be detectable by LISA in our neighbouring galaxy of Andromeda and another 80 in nearby Virgo, the study showed.

The research, published by the journal Physical Review Letters, is the first to use realistic globular cluster models to make detailed predictions of LISA sources.

Also Read: NASA Is Sending a Helicopter to Mars in 2020 

The team used more than a hundred fully evolved globular cluster models with properties similar to those of the observed globular clusters in the Milky Way.

The models were run on Quest, Northwestern’s supercomputer cluster. This powerful resource can evolve the full 12 billion years of a globular cluster’s life in a matter of days. (IANS)