Thursday April 25, 2019
Home Science & Technology New Evidence ...

New Evidence Asserts Mars Environment Over Billions of Years Ago Was Able to Support Liquid Water

River deposits exist across Mars and a region of Mars named Aeolis Dorsa contains some of the most spectacular and densely packed river deposits seen on the Red Planet

0
//
Mars
FILE - The base of Mars' Mount Sharp is pictured in this August 27, 2012 NASA handout photo taken by the Curiosity rover. VOA

New York, September 19, 2017 : The Mars environment over 3.5 billion years ago was able to support liquid water at the surface, says a study.

River deposits exist across the surface of Mars and a region of Mars named Aeolis Dorsa contains some of the most spectacular and densely packed river deposits seen on the Red Planet, according to the study published in the Geological Society of America (GSA) Bulletin.

These deposits are observable with satellite images because they have undergone a process called “topographic inversion” where the deposits filling once topographically low river channels have been exhumed in such a way that they now exist as ridges at the surface of the planet, the researchers said.

ALSO READ NASA Scientists Reveal New Information on Mars’ Formation and Evolution, Claim The Red Planet has a Porous Crust

With the use of high-resolution images and topographic data from cameras on orbiting satellites, Benjamin T Cardenas and colleagues from Jackson School of Geosciences at the University of Texas at Austin, identified fluvial deposit stacking patterns and changes in sedimentation styles controlled by a migratory coastline.

They also developed a method to measure river paleo-transport direction for a subset of these ridges.

Together, these measurements demonstrated that the studied river deposits once filled incised valleys.

On Earth, incised valleys are commonly cut and filled during falling and rising eustatic sea level, respectively.

The researchers concluded that similar falling and rising water levels in a large water body forced the formation of the paleo-valleys in their study area.

“We present evidence that some of these fluvial deposits represent incised valleys carved and filled during falls and rises in base level, which were likely controlled by changes in water-surface elevation of a large lake or sea,” the study said.

They observed cross-cutting relationships at the valley-scale, indicating multiple episodes of water level fall and rise, each well over 50 metres, a similar scale to eustatic sea level changes on Earth. (IANS)

Next Story

Research Reveals, Red Planet’s Rivers Were Wider Than Those On Earth Today

If the dates for these massive rivers are correct, the findings could suggest that Mars' late-stage atmosphere disappeared faster than previously calculated, or that there were other drivers of precipitation under low-atmosphere conditions, the researchers noted.

0
solar system
In the river basins, for which there is most data, Mars' rivers were about two times wider than those on Earth. Pixabay

Mars’ rivers flowed intensely and may have persisted as recently as one billion years ago, reveals a survey that found that the red planet’s rivers were wider than those on Earth today.

The study by scientists at the University of Chicago catalogued these rivers and found that significant river runoff persisted on Mars later into its history than previously thought.

According to the study, published in the Science Advances journal, the runoff was intense and occurred at hundreds of locations on the red planet.

Rivers
The survey used image data of well-preserved paleo-river channels. Pixabay

These findings suggest that climate-driven precipitation may have taken place on Mars even during the time that researchers think the planet was losing its atmosphere and was drying out.

This complicates the picture for scientists trying to model the ancient Martian climate, said lead author Edwin Kite, Assistant Professor at the University of Chicago.

“It’s already hard to explain rivers or lakes based on the information we have. This makes a difficult problem even more difficult,” he said.

But, Kite said, the constraints could be useful in winnowing the many theories that researchers have proposed to explain the climate.

The survey used image data of well-preserved paleo-river channels, alluvial fans and deltas across Mars, and calculated the intensity of river runoff using multiple methods, including an analysis of the size of the river channels.

Atmosphere
These findings suggest that climate-driven precipitation may have taken place on Mars even during the time that researchers think the planet was losing its atmosphere and was drying out. VOA

In the river basins, for which there is most data, Mars’ rivers were about two times wider than those on Earth.

Between 1 and 3.6 billion years ago, and likely after 1 billion years ago, there was intense runoff in these channels, amounting to 3 to 20 kg per square metre each day.

Also Read: US Approves Secret Nuclear Power Technology for Saudi Arabia

The runoff appeared to have been distributed globally, and was not a short-lived or localised phenomenon, the researchers said.

If the dates for these massive rivers are correct, the findings could suggest that Mars’ late-stage atmosphere disappeared faster than previously calculated, or that there were other drivers of precipitation under low-atmosphere conditions, the researchers noted. (IANS)