Wednesday February 26, 2020
Home Lead Story NASA’s ...

NASA’s Dragonfly Mission to Find Out the Possibilities of Life on Saturn’s Moon Titan

At first glance, Titan looks a lot like Earth

titan, nasa
Titan in front of Saturn as seen by Cassini. (Image credit: NASA). VOA

Saturn’s moon Titan has all the right ingredients for life. NASA’s newly announced mission, Dragonfly, will explore the icy moon from the air and the ground to determine whether life ever arose there.

A familiar alien landscape

At first glance, Titan looks a lot like Earth. Lakes and seas are scattered across the northern hemisphere, and occasional rains dampen its sandy surface. The similarities end there – Titan is so cold that water exists as rock-hard ice, and oily methane falls from the sky and trickles into the seas. The sand is made up of organic materials built from carbon, hydrogen, nitrogen and oxygen, completely unlike what you’d find on any beach on Earth.

“One of the things I think is so exciting about Titan is how it can be alien and familiar at the same time. It’s 94 K [-290°F/-179°C] – it’s totally different material than what we’re used to interacting with on a daily basis: water-ice bedrock and liquid methane reservoirs and organic sand dunes,” said Elizabeth Turtle, Dragonfly’s principal investigator.

titan, dragonfly, nasa
Artist’s rendering of Dragonfly in flight over Titan. (Image credit: Johns Hopkins APL). VOA

Titan’s surface is hidden from view by its hazy atmosphere, which is four times denser than Earth’s. Combined with the low gravity – just one-seventh as strong as what we’re used to – the thick atmosphere makes Titan an ideal target for an airborne explorer.

The idea of building an aircraft to fly in Titan’s thick atmosphere isn’t new, but it wasn’t until drone technology became more advanced that the Dragonfly team realized they could make their dream of flying on Titan a reality.

Leapfrogging across Titan

With its two sets of four propellers stacked on top of one another, Dragonfly looks a little bit like a drone, but it’s much bigger than something you would fly around in your backyard – around 3 meters long and more than a meter tall. The design will allow Dragonfly to take pictures from the air and land on Titan’s frozen surface for a closer view.

It will initially target a region near the moon’s equator that is covered in sand dunes, similar to what is found in deserts on Earth. From there, it will begin to explore the moon in a “leapfrog” way, scouting beyond its next target to see what lies ahead, then flying back to its planned landing site to touch down and analyze samples of the surface, snap photographs and scan for earthquakes – or titanquakes, rather.

nasa, dragonfly, titan
Representative-color image of Titan’s surface. (Image credit: NASA). VOA

Traveling eight kilometers per leap, Dragonfly will make its way toward Selk crater, over 100 kilometers away. Scientists think that the heat from the collision that formed the crater would have liquefied the water ice in Titan’s crust, creating an environment with all the necessary components for life. The Dragonfly team hopes to learn whether combining organic material with liquid water and energy in the form of heat could have caused complex molecules to develop – or even life itself.

“We have this chance to explore a world that we know has all the ingredients for life, but how far did it get towards life?” said Melissa Trainer, deputy principal investigator for the mission.

Looking for life

If life has arisen on Titan, Dragonfly should be able to detect it. One thing its instruments will be on the lookout for is a class of molecules called amino acids, which are found in all life on Earth. Amino acids come in left- and right-handed varieties, just like a pair of gloves. When scientists make amino acids in a lab, they tend to form both kinds in equal amounts. Life, however, seems to prefer the left-handed kind. If amino acids are present on Titan, Dragonfly should be able to tell if there are unequal amounts of left- and right-handed varieties – a sign that life is present on the frozen surface.

titan, nasa, dragonfly
Radar image of sand dunes in the Shangri-La region of Titan, where Dragonfly will land. (Image credit: NASA). VOA

Dragonfly will launch in 2026 and arrive at Titan in 2034 after an eight-year interplanetary cruise. The science and engineering teams have plenty to do in the meantime. “We have to finish designing and building a spacecraft, we have to test a bunch of instruments and get them calibrated,” said science team member Sarah Hörst. “There’s a lot of work to do … I can’t wait to get started!”

ALSO READ: NASA Selects Eight New Teams to Conduct Research about Moon

It’s a long way off, but the team is confident that the mission will be worth the wait and is excited to share what they learn with the public. “We want everyone to be able to come along on the journey to explore Titan,” Turtle said. (VOA)

Next Story

Jupiter not as Dry as it was Predicted to be: NASA Scientists

Jupiter not as dry as earlier thought, reveals new NASA probe

Jupiter may not be as dry as earlier shown by a NASA probe, according to the first science. (Representational Image). Pixabay

The largest planet in our solar system may not be as dry as earlier shown by a NASA probe, according to the first science results revealed by the US space agency’s Juno mission on the amount of water in Jupiter’s atmosphere.

At the equator, water makes up about 0.25 per cent of the molecules in Jupiter’s atmosphere — almost three times that of the Sun, said the study published in the journal Nature Astronomy.

These are also the first findings on the gas giant’s abundance of water since NASA’s 1995 Galileo mission suggested Jupiter might be extremely dry compared to the Sun. The comparison is based not on liquid water but on the presence of its components, oxygen and hydrogen, present in the Sun.

“We found the water in the equator to be greater than what the Galileo probe measured,” said Cheng Li, a Juno scientist at the University of California, Berkeley. “Because the equatorial region is very unique at Jupiter, we need to compare these results with how much water is in other regions,” Li said.

An accurate estimate of the total amount of water in Jupiter’s atmosphere has been on the wish lists of planetary scientists for decades. The figure in the gas giant represents a critical missing piece to the puzzle of our solar system’s formation.

These are also the first findings on the gas giant’s abundance of water since NASA’s 1995 Galileo mission suggested Jupiter might be extremely dry compared to the Sun. (Representational Image). Pixabay

Jupiter was likely the first planet to form, and it contains most of the gas and dust that was not incorporated into the Sun.

Water abundance also has important implications for the gas giant’s meteorology (how wind currents flow on Jupiter) and internal structure. While lightning — a phenomenon typically fuelled by moisture — detected on Jupiter by Voyager and other spacecraft implied the presence of water, an accurate estimate of the amount of water deep within Jupiter’s atmosphere remained elusive.

Before the Galileo probe stopped transmitting 57 minutes into its Jovian descent in December 1995, it radioed out spectrometer measurements of the amount of water in the gas giant’s atmosphere down to a depth of about 120 kilometres. The scientists working on the data were dismayed to find ten times less water than expected.

Also Read- Intel Showcases 1st Cryogenic Quantum Control Chip Called “Horse Ridge”

A rotating, solar-powered spacecraft Juno was launched in 2011. Because of the Galileo probe experience, the mission seeks to obtain water abundance readings across large regions of the immense planet.

The Juno science team used data collected during Juno’s first eight science flybys of Jupiter to generate the findings. (IANS)