Monday October 22, 2018
Home Science & Technology NASA: Earth&#...

NASA: Earth’s Ozone Hole Shrinks to Smallest Since 1988

0
//
60
NASA
NASA: Earth's Ozone Hole Shrinks to Smallest Since 1988 (VOA)
Republish
Reprint

Washington: The ozone hole over Antarctica shrank to its smallest peak since 1988, NASA said Thursday. The huge hole in Earth’s protective ozone layer reached its maximum this year in September, and this year NASA said it was 7.6 million square miles (19.6 million square kilometers). The hole size shrinks after mid-September.

This year’s maximum hole is more than twice as big as the United States, but it’s 1.3 million square miles smaller than last year and 3.3 million square miles smaller than 2015.

FILE - A false-color view of total ozone over the Antarctic pole is seen in this NASA handout image released Oct. 24, 2012. The purple and blue colors are where there is the least ozone. The average area covered by the Antarctic ozone hole in that year was the second smallest in two decades, at 8.2 million square miles; in September 2017, it was 7.6 million square miles.

[ FILE – A false-color view of total ozone over the Antarctic pole is seen in this NASA handout image released Oct. 24, 2012. The purple and blue colors are where there is the least ozone. The average area covered by the Antarctic ozone hole in that year was the second smallest in two decades, at 8.2 million square miles; in September 2017, it was 7.6 million square miles ].

Paul Newman, chief Earth scientist at NASA’s Goddard Space Flight Center, said stormy conditions in the upper atmosphere warmed the air and kept the chemicals chlorine and bromine from eating ozone. He said scientists haven’t quite figured out why some years are stormier — and have smaller ozone holes — than others.

“It’s really small this year. That’s a good thing,” Newman said.

Newman said this year’s drop is mostly natural but is on top of a trend of smaller steady improvements likely from the banning of ozone-eating chemicals in a 1987 international treaty. The ozone hole hit its highest in 2000 at 11.5 million square miles (29.86 million square kilometers).

Ozone is a colorless combination of three oxygen atoms. High in the atmosphere, about 7 to 25 miles (11 to 40 kilometers) above the Earth, ozone shields Earth from ultraviolet rays that cause skin cancer, crop damage and other problems.

Scientists at the United Nations a few years ago determined that without the 1987 treaty, by 2030 there would have been an extra 2 million skin cancer cases. They said that overall, the ozone layer is beginning to recover because of the phase-out of chemicals used in refrigerants and aerosol cans. (VOA)

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

Habitability Of Surrounding Planets Affected By Super Flares Of Red Dwarfs: NASA

Red dwarfs -- especially young red dwarfs -- are active stars, producing flares blast out energy

0
NASA, space, red dwarf
Superflares from red dwarfs may affect habitability of planets Pixabay

Using NASA’s Hubble Space Telescope, astronomers have found that violent outbursts, or superflares, from red dwarf stars could affect the habitability of any planets orbiting it.

Young low-mass stars flare much more frequently and more energetically than old stars and middle-age stars like our Sun, the findings of the study published in the Astrophysical Journal showed.

The findings are based on observations of the flare frequency of 12 red dwarfs.

Hubble is observing such stars through a large programme called HAZMAT — Habitable Zones and M dwarf Activity across Time.

“M dwarf” is the astronomical term for a red dwarf star — the smallest, most abundant and longest-living type of star in our galaxy.

Hubble Telescope. red dwarf
Hubble Telescope. Flickr

The HAZMAT programme is an ultraviolet survey of red dwarfs at three different ages — young, intermediate, and old.

“The goal of the HAZMAT programme is to help understand the habitability of planets around low-mass stars,” explained the programme’s principal investigator, Evgenya Shkolnik from Arizona State University.

“These low-mass stars are critically important in understanding planetary atmospheres,” Shkolnik added.

Stellar flares from red dwarfs are particularly bright in ultraviolet wavelengths, compared with Sun-like stars.

Red dwarf  planet
Artist’s view of planets transiting red dwarf star in TRAPPIST-1 system. Flickr

Hubble’s ultraviolet sensitivity makes the telescope very valuable for observing these flares.

The flares are believed to be powered by intense magnetic fields that get tangled by the roiling motions of the stellar atmosphere.

When the tangling gets too intense, the fields break and reconnect, unleashing tremendous amounts of energy.

The team found that the flares from the youngest red dwarfs they surveyed — just about 40 million years old — are 100 to 1,000 times more energetic than when the stars are older.

This younger age is when terrestrial planets are forming around their stars.

Red dwarf
This illustration shows a red dwarf star orbited by a hypothetical exoplanet. NASA

About three-quarters of the stars in our Milky Way galaxy are red dwarfs. Most of the galaxy’s “habitable-zone” planets — planets orbiting their stars at a distance where temperatures are moderate enough for liquid water to exist on their surface — orbit red dwarfs.

In fact, the nearest star to our Sun, a red dwarf named Proxima Centauri, has an Earth-size planet in its habitable zone.

Also Read: NASA Plans For Science Payloads For Delivery To Moon

However, red dwarfs — especially young red dwarfs — are active stars, producing flares that could blast out so much energy that it disrupts and possibly strips off the atmospheres of these fledgling planets. (IANS)