Monday December 16, 2019
Home Lead Story NASA’s ...

NASA’s instrument to measure Sun’s energy

For instance, spectral irradiance measurements of the Sun's ultraviolet radiation are critical to understanding the ozone layer -- Earth's natural sunscreen

0
//
NASA Seeks Partnership With US Industry to Develop First Gateway Element
NASA seeks US partners to develop reusable systems for Moon mission, Pixabay
  • NASA’s new instrument can measure Sun’s incoming energy
  • The instrument is called Total and Spectral Solar Irradiance Sensor (TSIS-1)
  • This can help bring in an energy revolution in future

To continue long-term measurements of the Sun’s incoming energy, NASA has powered on a new instrument installed on the International Space Station (ISS).

Sun
Solar energy is one of the biggest energy sources in the world.

The instrument, Total and Spectral solar Irradiance Sensor (TSIS-1), became fully operational with all instruments collecting science data as of this March, NASA said.

“TSIS-1 extends a long data record that helps us understand the Sun’s influence on Earth’s radiation budget, ozone layer, atmospheric circulation, and ecosystems, and the effects that solar variability has on the Earth system and climate change,” said Dong Wu, TSIS-1 project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. TSIS-1 studies the total amount of light energy emitted by the Sun using the Total Irradiance Monitor, one of two sensors onboard.

Also Read: Why is the Sun’s atmosphere much hotter than its surface

This sensor’s data will give scientists a better understanding of Earth’s primary energy supply and provide information to help improve models simulating the planet’s climate.

The second onboard sensor, called the Spectral Irradiance Monitor, measures how the Sun’s energy is distributed over the ultraviolet, visible and infrared regions of light. Measuring the distribution of the Sun’s energy is important because each wavelength of light interacts with the Earth’s atmosphere differently.

Measuring solar energy is one big technological developement. Pixabay

For instance, spectral irradiance measurements of the Sun’s ultraviolet radiation are critical to understanding the ozone layer — Earth’s natural sunscreen that protects life from harmful radiation.

“All systems are operating within their expected ranges,” said Peter Pilewskie, TSIS-1 lead scientist at the University of Colorado Laboratory for Atmospheric and Space Physics in the US. IANS

Next Story

Scientists Create Map of Wind Circulation in the Upper Atmosphere of Mars

Scientists map winds in Mars' upper atmosphere for first time

0
Mars
The new map of Mars winds helps scientists to better understand the workings of the Martian climate. (Representational image). Pixabay

Using data from NASA’s MAVEN spacecraft, researchers have created the first-ever map of wind circulation in the upper atmosphere of Mars.

The new map of Mars winds helps scientists to better understand the workings of the Martian climate, giving them a more accurate picture of its ancient past and its ongoing evolution.

“The observed global circulation provides critical inputs needed to constrain global atmospheric models,” said Mehdi Benna of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“These are the same models that are used to extrapolate the state of the Martian climate into the distant past,” added Benna in the first paper published in the journal Science.

MAVEN (Mars Atmosphere and Volatile EvolutioN mission) celebrated the five-year anniversary of its entrance into orbit around Mars on September 21.

Mission Mars
The winds observed in the Martian upper atmosphere are sometimes similar to what we see in global model simulations. (Representational image). Pixabay

The primary scientific goal of the mission is to study what is left of Mars’ atmosphere to determine how, in the distant past, an ocean-covered and potentially habitable Mars became the dry and desolate place it is today.

“The winds observed in the Martian upper atmosphere are sometimes similar to what we see in global model simulations, but other times can be quite different,” said Kali Roeten of University of Michigan.

“These winds can also be highly variable on the timescale of hours, yet in other cases, are consistent throughout the observation period, said Roeten in the second paper published in the Journal of Geophysical Research-Planets.

Upper atmospheric winds on Earth have already been mapped in detail.

Winds drive a series of processes in the atmosphere that can affect the propagation of radio waves, which are crucial for communications purposes for those on the surface, and the prediction of paths satellites will take in their orbit around Earth.

Mapping Martian winds, therefore, is a crucial step towards understanding characteristics of extraterrestrial atmospheres beyond what we know about processes on Earth.

Also Read- Google Assistant Rolls out Interpreter Mode for Smartphones

The upper atmospheric winds on both Earth and Mars are in the planets’ respective thermospheres, which are areas where temperature increases with height.

This discovery was the first detection of topography-induced gravity wave ripples in the thermosphere of any planet, even Earth. (IANS)