Thursday November 14, 2019
Home Lead Story NASA Scientis...

NASA Scientists to Use Submarines to Hunt For Meteorite Remains

The remote submarine dive is scheduled for later on Monday, the report said

0
//
Kepler, NASA, tissue
NASA to use Blockchain technology for air traffic management. Pixabay

Scientists from several organisations in the US, including NASA, are planning to use remote-operated submarines to hunt for the remains of an outer space object — believed to be a meteorite — that splashed down into the Pacific Ocean on March 7, the media reported.

The Nautilus research ship of the non-profit group Ocean Exploration Trust (OET) will aid in the scavenger hunt, Digitaltrends.com reported on Sunday.

Joined by scientists from NASA, the University of Washington and the Olympic Coast National Marine Sanctuary, the Nautilus will use remote-operated submarines to survey the area and collect any fragments they find, it added.

meteorite
Meteorite. Pixabay

When the outer space object entered the Pacific Ocean, a bright flash lit up the sky and a tremendous boom rattled the residents of Ocean Shores, Washington.

They initially thought it was a spaceship, but from analysis of radar signals, NASA’s cosmic dust sample curator Marc Fries concluded it was a meteorite about the size of a golf cart.

Scientists believe that about two tonnes of fragments are up for grabs. Some of these fragments could be as large as a brick and they could be scattered over a half-mile of the sea floor.

Also Read: NASA Postpones launch of James Webb Space Telescope To 2021

The remote submarine dive is scheduled for later on Monday, the report said. (IANS)

Next Story

NASA Telescope Captures Record-Breaking Thermonuclear X-Ray Flash: ’Burst was Outstanding’

The observations reveal many phenomena that have never been seen together in a single burst

0
NASA, Telescope, Thermonuclear
The X-ray burst, the brightest seen by NICER so far, came from an object named "J1808". Wikimedia Commons

NASA has detected a massive thermonuclear explosion coming from outer space, caused by a massive thermonuclear flash on the surface of a pulsar — the crushed remains of a star that long ago exploded as a supernova.

The explosion released as much energy in 20 seconds as the Sun does in nearly 10 days.

NASA’s Neutron Star Interior Composition Explorer (NICER) telescope on the International Space Station (ISS) detected a sudden spike of X-rays on August 20, reports the US space agency.

The X-ray burst, the brightest seen by NICER so far, came from an object named “J1808”.

NASA, Telescope, Thermonuclear
The explosion released as much energy in 20 seconds as the Sun does in nearly 10 days. Pixabay

The observations reveal many phenomena that have never been seen together in a single burst.

In addition, the subsiding fireball briefly brightened again for reasons astronomers cannot yet explain.

“This burst was outstanding. We see a two-step change in brightness, which we think is caused by the ejection of separate layers from the pulsar surface, and other features that will help us decode the physics of these powerful events,” said lead researcher Peter Bult, an astrophysicist at NASA’s Goddard Space Flight Center in Maryland.

The detail NICER captured on this record-setting eruption will help astronomers fine-tune their understanding of the physical processes driving the thermonuclear flare-ups of it and other bursting pulsars.

Also Read- New Indian Traffic Rules 2019 – All That You Need to Know

“J1808” is located about 11,000 light-years away in the constellation Sagittarius.

It spins at a dizzying 401 rotations each second, and is one member of a binary system. Its companion is a brown dwarf, an object larger than a giant planet yet too small to be a star. A steady stream of hydrogen gas flows from the companion toward the neutron star, and it accumulates in a vast storage structure called an accretion disk.

Astronomers employ a concept called the “Eddington limit”, named after English astrophysicist Sir Arthur Eddington, to describe the maximum radiation intensity a star can have before that radiation causes the star to expand.

This point depends strongly on the composition of the material lying above the emission source.

NASA, Telescope, Thermonuclear
NASA’s Neutron Star Interior Composition Explorer (NICER) telescope on the International Space Station (ISS) detected a sudden spike of X-rays on August 20, reports the US space agency. Pixabay

“Our study exploits this longstanding concept in a new way,” said co-author Deepto Chakrabarty, a professor of physics at MIT.

“We are apparently seeing the Eddington limit for two different compositions in the same X-ray burst. This is a very powerful and direct way of following the nuclear burning reactions that underlie the event.”

Also Read- Jeff Bezos Now Plans to Own National Football League Team

A paper describing the findings has been published by The Astrophysical Journal Letters. (IANS)