Saturday March 24, 2018
Home Science & Technology NASA Targets ...

NASA Targets May 2018 Launch of Mars InSight Mission

Source :

NASA’s Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission to study the deep interior of Mars is targeting a new launch window that begins May 5, 2018, with a Mars landing scheduled for Nov. 26, 2018. InSight’s primary goal is to help us understand how rocky planets — including Earth — formed and…

Next Story

NASA’s instrument to measure Sun’s energy

For instance, spectral irradiance measurements of the Sun's ultraviolet radiation are critical to understanding the ozone layer -- Earth's natural sunscreen

NASA to release two missions focused on moon soon in 2022. Pixabay
NASA's new instrument can measure incoming solar energy. Pixabay
  • NASA’s new instrument can measure Sun’s incoming energy
  • The instrument is called Total and Spectral Solar Irradiance Sensor (TSIS-1)
  • This can help bring in an energy revolution in future

To continue long-term measurements of the Sun’s incoming energy, NASA has powered on a new instrument installed on the International Space Station (ISS).

Solar energy is one of the biggest energy sources in the world.

The instrument, Total and Spectral solar Irradiance Sensor (TSIS-1), became fully operational with all instruments collecting science data as of this March, NASA said.

“TSIS-1 extends a long data record that helps us understand the Sun’s influence on Earth’s radiation budget, ozone layer, atmospheric circulation, and ecosystems, and the effects that solar variability has on the Earth system and climate change,” said Dong Wu, TSIS-1 project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. TSIS-1 studies the total amount of light energy emitted by the Sun using the Total Irradiance Monitor, one of two sensors onboard.

Also Read: Why is the Sun’s atmosphere much hotter than its surface

This sensor’s data will give scientists a better understanding of Earth’s primary energy supply and provide information to help improve models simulating the planet’s climate.

The second onboard sensor, called the Spectral Irradiance Monitor, measures how the Sun’s energy is distributed over the ultraviolet, visible and infrared regions of light. Measuring the distribution of the Sun’s energy is important because each wavelength of light interacts with the Earth’s atmosphere differently.

Measuring solar energy is one big technological developement. Pixabay

For instance, spectral irradiance measurements of the Sun’s ultraviolet radiation are critical to understanding the ozone layer — Earth’s natural sunscreen that protects life from harmful radiation.

“All systems are operating within their expected ranges,” said Peter Pilewskie, TSIS-1 lead scientist at the University of Colorado Laboratory for Atmospheric and Space Physics in the US. IANS

Next Story