Thursday October 24, 2019
Home Lead Story NASA to Send ...

NASA to Send Organ-on-Chips To Test Human Tissue Health in Space

Called a micro-physiological system, a tissue chip needs three main properties

0
//
NASA, tissue
US shutdown delays space missions but NASA not grounded: Report,

NASA is planning to send small devices containing human cells in a 3D matrix — known as tissue chips or organs-on-chips — to the International Space Station (ISS) to test how they respond to stress, drugs and genetic changes.

Made of flexible plastic, tissue chips have ports and channels to provide nutrients and oxygen to the cells inside them.

The “Tissue Chips in Space” initiative seeks to better understand the role of microgravity on human health and disease and to translate that understanding to improved human health on Earth, NASA said.

“Spaceflight causes many significant changes in the human body,” said Liz Warren, Associate Program Scientist at the Center for the Advancement of Science in Space (CASIS) in the US.

Kepler, NASA, tissue
This illustration made available by NASA shows the Kepler Space Telescope. As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. VOA

“We expect tissue chips in space to behave much like an astronaut’s body, experiencing the same kind of rapid change,” Warren said.

The US space agency is planning the investigations in collaboration with CASIS and the National Center for Advancing Translational Sciences (NCATS) at the National Institutes for Health (NIH).

Many of the changes in the human body caused by microgravity resemble the onset and progression of diseases associated with ageing on Earth, such as bone and muscle loss. But the space-related changes occur much faster.

That means scientists may be able to use tissue chips in space to model changes that might take months or years to happen on Earth.

Parkinson's Disease, Kepler, NASA, tissue
A researcher takes a tissue sample from a human brain at the Multiple Sclerosis and Parkinson’s UK Tissue Bank, VOA

This first phase of Tissue Chips in Space includes five investigations. An investigation of immune system ageing is planned for launch on the SpaceX CRS-16 flight, scheduled for this year.

The other four, scheduled to launch on SpaceX CRS-17 or subsequent flights, include lung host defense, the blood-brain barrier, musculoskeletal disease and kidney function.

In addition, four more projects are scheduled for launch in summer 2020, including two on engineered heart tissue to understand cardiovascular health, one on muscle wasting and another on gut inflammation.

Kepler, NASA, tissue
“Detecting life in an agnostic fashion means not using characteristics particular to Earth life,” said Heather Graham at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Pixabay

Also called a micro-physiological system, a tissue chip needs three main properties, according to Lucie Low, scientific programme manager at National Center for Advancing Translational Sciences in the US.

Also Read: NASA’s Ralph Will Explore Jupiter’s Trojan Asteroids in 2021

“It has to be 3D, because humans are 3D,” she explained.

“It must have multiple, different types of cells, because an organ is made up of all kinds of tissue types. And it must have microfluidic channels, because every single tissue in your body has vasculature to bring in blood and nutrients and to take away detritus,” she added. (IANS)

Next Story

NASA Failed to Trace Chandrayaan 2’s Vikram Lander on Lunar Surface

On July 22, the Rs 978-crore Chandrayaan-2 was launched into space by India's heavy lift rocket Geosynchronous Satellite Launch Vehicle-Mark III

0
NASA, Chandrayaan 2, Vikram Lander
A NASA scientist said the spacecraft failed to trace Vikram because of two reasons -- one, Vikram is located outside the area the US agency photographed, second, because it's lying in a shadowed part of the moon. Wikimedia Commons

US Space agency NASA has once again failed to trace Chandrayaan 2’s Vikram lander on the lunar surface.

A NASA spacecraft clicked photos of the landing site of Vikram earlier this month, but couldn’t capture the lander.

A NASA scientist said the spacecraft failed to trace Vikram because of two reasons — one, Vikram is located outside the area the US agency photographed, second, because it’s lying in a shadowed part of the moon.

On July 22, the Rs 978-crore Chandrayaan-2 was launched into space by India’s heavy lift rocket Geosynchronous Satellite Launch Vehicle-Mark III (GSLV Mk III) in a text book style.

NASA, Chandrayaan 2, Vikram Lander
A NASA spacecraft clicked photos of the landing site of Vikram earlier this month, but couldn’t capture the lander. Wikimedia Commons

The Chandrayaan-2 spacecraft comprised three segments — the Orbiter (weighing 2,379 kg, eight payloads), Vikram (1,471 kg, four payloads) and Pragyan (27 kg, two payloads).

After five earth-bound orbit raising activities, Chandrayaan-2 was inserted into the lunar orbit. On September 2, Vikram separated from the orbiter. It made a historic landing attempt on September 7.

According to NASA, Vikram attempted a landing on a small patch of lunar highland smooth plains between Simpelius N and Manzinus C craters.

This event was India’s first attempt at a soft landing on the moon.

Also Read- Club Factory App Becomes Most Installed App on Google Play Store

The US agency said Vikram’s targeted landing site was located about 600 kilometres (370 miles) from the south pole in a relatively ancient terrain (70.8AoS latitude, 23.5AoE longitude).

According to NASA, Vikram had a hard landing and the precise location of the spacecraft in the lunar highlands has yet to be determined. (IANS)