Friday February 22, 2019
Home Lead Story NASA to Send ...

NASA to Send Organ-on-Chips To Test Human Tissue Health in Space

Called a micro-physiological system, a tissue chip needs three main properties

0
//
NASA, tissue
US shutdown delays space missions but NASA not grounded: Report,

NASA is planning to send small devices containing human cells in a 3D matrix — known as tissue chips or organs-on-chips — to the International Space Station (ISS) to test how they respond to stress, drugs and genetic changes.

Made of flexible plastic, tissue chips have ports and channels to provide nutrients and oxygen to the cells inside them.

The “Tissue Chips in Space” initiative seeks to better understand the role of microgravity on human health and disease and to translate that understanding to improved human health on Earth, NASA said.

“Spaceflight causes many significant changes in the human body,” said Liz Warren, Associate Program Scientist at the Center for the Advancement of Science in Space (CASIS) in the US.

Kepler, NASA, tissue
This illustration made available by NASA shows the Kepler Space Telescope. As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. VOA

“We expect tissue chips in space to behave much like an astronaut’s body, experiencing the same kind of rapid change,” Warren said.

The US space agency is planning the investigations in collaboration with CASIS and the National Center for Advancing Translational Sciences (NCATS) at the National Institutes for Health (NIH).

Many of the changes in the human body caused by microgravity resemble the onset and progression of diseases associated with ageing on Earth, such as bone and muscle loss. But the space-related changes occur much faster.

That means scientists may be able to use tissue chips in space to model changes that might take months or years to happen on Earth.

Parkinson's Disease, Kepler, NASA, tissue
A researcher takes a tissue sample from a human brain at the Multiple Sclerosis and Parkinson’s UK Tissue Bank, VOA

This first phase of Tissue Chips in Space includes five investigations. An investigation of immune system ageing is planned for launch on the SpaceX CRS-16 flight, scheduled for this year.

The other four, scheduled to launch on SpaceX CRS-17 or subsequent flights, include lung host defense, the blood-brain barrier, musculoskeletal disease and kidney function.

In addition, four more projects are scheduled for launch in summer 2020, including two on engineered heart tissue to understand cardiovascular health, one on muscle wasting and another on gut inflammation.

Kepler, NASA, tissue
“Detecting life in an agnostic fashion means not using characteristics particular to Earth life,” said Heather Graham at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Pixabay

Also called a micro-physiological system, a tissue chip needs three main properties, according to Lucie Low, scientific programme manager at National Center for Advancing Translational Sciences in the US.

Also Read: NASA’s Ralph Will Explore Jupiter’s Trojan Asteroids in 2021

“It has to be 3D, because humans are 3D,” she explained.

“It must have multiple, different types of cells, because an organ is made up of all kinds of tissue types. And it must have microfluidic channels, because every single tissue in your body has vasculature to bring in blood and nutrients and to take away detritus,” she added. (IANS)

Next Story

Anticipated Problems That May Effect NASA’s Mars Mission

According to results from the first eight analog space crews, presented at the American Association for the Advancement of Science (AAAS) annual meeting in Washington, D.C., the astronauts are able to successfully complete tasks between 20 and 60 per cent of the time.

0
NASA has formalised plans to send a manned mission to Mars, a journey that could involve 250 million miles of travel on a small spacecraft.  Pixabay

Researchers are developing a predictive model to help NASA anticipate conflicts and communication breakdowns among crew members and tick off problems that may make or break the Mission to Mars.

NASA has formalised plans to send a manned mission to Mars, a journey that could involve 250 million miles of travel on a small spacecraft.

To understand the psychological demands of this Mars journey, Northwestern University has charted a multi-phase study conducted in two analog environments — HERA in the Johnson Space Center in Houston and the SIRIUS Mission in the NEK analog located in the Institute for Bio-Medical Problems (IBMP) in Russia.

The varsity will study the behaviour of analog astronaut crews on mock missions, complete with isolation, sleep deprivation, specially designed tasks and mission control, which mimics real space travel with delayed communication.

Mars
NASA has formalised plans to send a manned mission to Mars, a journey that could involve 250 million miles of travel on a small spacecraft. 
Pixabay

“Astronauts are super humans. They are people who are incredibly physically fit and extremely smart,” said Leslie DeChurch, Professor at Northwestern.

“We’re taking an already state-of-the-art crew selection system and making it even better by finding the values, traits and other characteristics that will allow NASA to compose crews that will get along,” DeChurch added.

HERA’s capsule simulator houses astronauts for up to 45 days — a mock mission control outside the capsule — that augments the realism with sound effects, vibrations and communication delays.

space
According to results from the first eight analog space crews, presented at the American Association for the Advancement of Science (AAAS) annual meeting in Washington, D.C., the astronauts are able to successfully complete tasks between 20 and 60 per cent of the time. Pixabay

Those on the inside undergo sleep deprivation and try to perform tasks. The researchers collect moment-to-moment metrics about individual performance, moods, psychosocial adaptation and more.

According to results from the first eight analog space crews, presented at the American Association for the Advancement of Science (AAAS) annual meeting in Washington, D.C., the astronauts are able to successfully complete tasks between 20 and 60 per cent of the time.

Also Read: Iran Doubts Europe’s Efforts To Keep Nuclear Deal Alive

The next phase of the research, which began on February 15, involves using the model to predict breakdowns and problems a new HERA crew will experience and making changes to “who works with whom, on what, and when”.

The experiment on the SIRIUS analog in Moscow, will begin on March 15, where four Russians and two Americans, will undertake a 120-day fictional mission around the moon, including a moon landing operation. (IANS)