Monday October 22, 2018

NASA’S Mars Odyssey Spacecraft Captures First Images of the Martian Moon Phobos after 16 years

Phobos has an oblong shape with an average diameter of about 22 kilometres

0
//
45
Phobos
On September 29, Phobos was observed by Thermal Emission Imaging System (THEMIS) camera on Mars Odyssey orbiter, which has been launched in 2001. Pixabay
Republish
Reprint

Washington, October 8, 2017 : After orbiting the Red Planet for 16 years, NASA’s Mars Odyssey spacecraft has captured its first images of the Martian moon Phobos.

The Thermal Emission Imaging System (THEMIS) camera on Mars Odyssey orbiter, launched in 2001, observed Phobos on September 29.

Phobos has an oblong shape with an average diameter of about 22 kilometres.

Cameras on other Mars orbiters have previously taken higher-resolution images of Phobos, but none with the infrared information available from THEMIS.

Observations in multiple bands of thermal-infrared wavelengths can yield information about the mineral composition of the surface, as well as the surface texture, NASA said in a statement this week.

“Although THEMIS has been at Mars for 16 years, this was the first time we have been able to turn the spacecraft around to look at Phobos,” said THEMIS Mission Planner Jonathon Hill of Arizona State University.

The researchers combined visible-wavelength and infrared data to produce an image color-coded for surface temperatures of this moon, which has been considered for a potential future human-mission outpost, NASA said.

“This half-moon view of Phobos was chosen because it allowed us to observe a wide range of temperatures on the surface,” Hill added.

ALSO READ NASA Scientists Reveal New Information on Mars’ Formation and Evolution, Claim The Red Planet has a Porous Crust

One major question about Phobos and Mars’ even smaller moon, Deimos, is whether they are captured asteroids or bits of Mars knocked into the sky by impact.

The researchers believe that compositional information from THEMIS might help pin down their origin.

Since Odyssey began orbiting the Red Planet in 2001, THEMIS has provided compositional and thermal properties information from all over Mars, but never before imaged either Martian moon.

The September 29 observation was completed to validate that the spacecraft could safely do so, as the start of a possible series of observations of Phobos and Deimos in coming months.

“There is heightened interest in Phobos because of the possibility that future astronauts could perhaps use it as an outpost,” said Odyssey Project Scientist Jeffrey Plaut of NASA’s Jet Propulsion Laboratory in Pasadena, California. (IANS)

 

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

Habitability Of Surrounding Planets Affected By Super Flares Of Red Dwarfs: NASA

Red dwarfs -- especially young red dwarfs -- are active stars, producing flares blast out energy

0
NASA, space, red dwarf
Superflares from red dwarfs may affect habitability of planets Pixabay

Using NASA’s Hubble Space Telescope, astronomers have found that violent outbursts, or superflares, from red dwarf stars could affect the habitability of any planets orbiting it.

Young low-mass stars flare much more frequently and more energetically than old stars and middle-age stars like our Sun, the findings of the study published in the Astrophysical Journal showed.

The findings are based on observations of the flare frequency of 12 red dwarfs.

Hubble is observing such stars through a large programme called HAZMAT — Habitable Zones and M dwarf Activity across Time.

“M dwarf” is the astronomical term for a red dwarf star — the smallest, most abundant and longest-living type of star in our galaxy.

Hubble Telescope. red dwarf
Hubble Telescope. Flickr

The HAZMAT programme is an ultraviolet survey of red dwarfs at three different ages — young, intermediate, and old.

“The goal of the HAZMAT programme is to help understand the habitability of planets around low-mass stars,” explained the programme’s principal investigator, Evgenya Shkolnik from Arizona State University.

“These low-mass stars are critically important in understanding planetary atmospheres,” Shkolnik added.

Stellar flares from red dwarfs are particularly bright in ultraviolet wavelengths, compared with Sun-like stars.

Red dwarf  planet
Artist’s view of planets transiting red dwarf star in TRAPPIST-1 system. Flickr

Hubble’s ultraviolet sensitivity makes the telescope very valuable for observing these flares.

The flares are believed to be powered by intense magnetic fields that get tangled by the roiling motions of the stellar atmosphere.

When the tangling gets too intense, the fields break and reconnect, unleashing tremendous amounts of energy.

The team found that the flares from the youngest red dwarfs they surveyed — just about 40 million years old — are 100 to 1,000 times more energetic than when the stars are older.

This younger age is when terrestrial planets are forming around their stars.

Red dwarf
This illustration shows a red dwarf star orbited by a hypothetical exoplanet. NASA

About three-quarters of the stars in our Milky Way galaxy are red dwarfs. Most of the galaxy’s “habitable-zone” planets — planets orbiting their stars at a distance where temperatures are moderate enough for liquid water to exist on their surface — orbit red dwarfs.

In fact, the nearest star to our Sun, a red dwarf named Proxima Centauri, has an Earth-size planet in its habitable zone.

Also Read: NASA Plans For Science Payloads For Delivery To Moon

However, red dwarfs — especially young red dwarfs — are active stars, producing flares that could blast out so much energy that it disrupts and possibly strips off the atmospheres of these fledgling planets. (IANS)