Wednesday May 23, 2018

NASA’S Mars Odyssey Spacecraft Captures First Images of the Martian Moon Phobos after 16 years

Phobos has an oblong shape with an average diameter of about 22 kilometres

0
//
42
Phobos
On September 29, Phobos was observed by Thermal Emission Imaging System (THEMIS) camera on Mars Odyssey orbiter, which has been launched in 2001. Pixabay
Republish
Reprint

Washington, October 8, 2017 : After orbiting the Red Planet for 16 years, NASA’s Mars Odyssey spacecraft has captured its first images of the Martian moon Phobos.

The Thermal Emission Imaging System (THEMIS) camera on Mars Odyssey orbiter, launched in 2001, observed Phobos on September 29.

Phobos has an oblong shape with an average diameter of about 22 kilometres.

Cameras on other Mars orbiters have previously taken higher-resolution images of Phobos, but none with the infrared information available from THEMIS.

Observations in multiple bands of thermal-infrared wavelengths can yield information about the mineral composition of the surface, as well as the surface texture, NASA said in a statement this week.

“Although THEMIS has been at Mars for 16 years, this was the first time we have been able to turn the spacecraft around to look at Phobos,” said THEMIS Mission Planner Jonathon Hill of Arizona State University.

The researchers combined visible-wavelength and infrared data to produce an image color-coded for surface temperatures of this moon, which has been considered for a potential future human-mission outpost, NASA said.

“This half-moon view of Phobos was chosen because it allowed us to observe a wide range of temperatures on the surface,” Hill added.

ALSO READ NASA Scientists Reveal New Information on Mars’ Formation and Evolution, Claim The Red Planet has a Porous Crust

One major question about Phobos and Mars’ even smaller moon, Deimos, is whether they are captured asteroids or bits of Mars knocked into the sky by impact.

The researchers believe that compositional information from THEMIS might help pin down their origin.

Since Odyssey began orbiting the Red Planet in 2001, THEMIS has provided compositional and thermal properties information from all over Mars, but never before imaged either Martian moon.

The September 29 observation was completed to validate that the spacecraft could safely do so, as the start of a possible series of observations of Phobos and Deimos in coming months.

“There is heightened interest in Phobos because of the possibility that future astronauts could perhaps use it as an outpost,” said Odyssey Project Scientist Jeffrey Plaut of NASA’s Jet Propulsion Laboratory in Pasadena, California. (IANS)

 

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

SpaceX to Launch Twin NASA Water Cycle Tracker Satellites

The satellites are scheduled to launch at 3.47 p.m. EDT from Vandenberg Air Force Base in Central California

0
//
8
SpaceX to Launch Twin NASA Water Cycle Tracker Satellites
SpaceX to Launch Twin NASA Water Cycle Tracker Satellites. Pixabay

On its way to deploy five Iridium Next communications satellites on Tuesday, a SpaceX Falcon 9 rocket will also launch twin NASA satellites that will monitor Earth’s water cycle, marking a unique rideshare arrangement.

The satellites are scheduled to launch at 3.47 p.m. EDT from Vandenberg Air Force Base in Central California. (This corresponds to 1.17 a.m. Wednesday India time), NASA said.

The two Gravity Recovery and Climate Experiment Follow-On mission (GRACE-FO) spacecraft will follow each other in orbit around Earth, separated by about 220 km.

On liftoff, the Falcon 9 first-stage engines will burn for approximately two minutes and 45 seconds before shutting down at main engine cutoff (MECO).

The Falcon 9’s first and second stages will separate seconds later. Then, the second-stage engine will ignite for the first time (SES1) and burn until the vehicle reaches the altitude of the injection orbit, 490 km.

NASA
Representational Image, VOA

While this burn is going on, the payload fairing — the launch vehicle’s nose cone — will separate into two halves like a clamshell and fall away.

When the rocket’s second stage has completed its ascent to the injection orbit altitude, it will pitch down (its nose points down) 30 degrees and roll so that one of the twin GRACE-FO satellites is facing down, toward Earth, and the other is facing up, toward space.

Then the second stage engine will cut off (SECO).

About 10 minutes after liftoff, a separation system on the second stage will deploy the GRACE-FO satellites.

Separation will occur over the Pacific Ocean at about 17.5 degrees North latitude, 122.6 degrees West longitude.

The first opportunity to receive data from the spacecraft will occur at NASA’s tracking station at McMurdo, Antarctica, about 23 minutes after separation, NASA said.

Also Read: A Study by NASA Shows Freshwater Decline in India

After the GRACE-FO satellites are deployed, the Falcon 9 second stage will coast for half an orbit before reigniting its engine (SES2) to take the Iridium Next satellites to a higher orbit for deployment.

GRACE-FO, a collaborative mission of NASA and the German Research Centre for Geosciences (GFZ), continues the work of the original GRACE mission in observing the movement of water and other mass around our planet by tracking the changing pull of gravity very precisely. (IANS)