Monday June 25, 2018
Home Lead Story NASA’s ...

NASA’s plan on getting Martian samples to Earth

0
//
45
This ice which was found can help scientists understand the climate history of Mars. IANS
This ice which was found can help scientists understand the climate history of Mars. IANS
Republish
Reprint
  • NASA plans on getting Martian samples to Earth from Mars
  • To know if life existed anywhere other than on Earth

Washington, Dec 11: (IANS) NASA has revealed how it plans to bring back Martian samples to Earth for the first time with the help of its next rover mission to the Red Planet, Mars 2020.

After landing on Mars, a drill will capture rock cores, while a caching system with a miniature robotic arm will seal up these samples. Then, they will be deposited on the Martian surface for possible pickup by a future mission, NASA said.

“Whether life ever existed beyond Earth is one of the grand questions humans seek to answer,” said Ken Farley of NASA’s Jet Propulsion Laboratory in Pasadena, California.

“What we learn from the samples collected during this mission has the potential to address whether we’re alone in the universe,” Farley said.

Mars 2020 relies heavily on the system designs and spare hardware previously created for Mars Science Laboratory’s Curiosity rover, which landed in 2012.

Despite its similarities to Mars Science Laboratory, the new mission has very different goals – it will seek signs of ancient life by studying the terrain that is now inhospitable, but once held flowing rivers and lakes, more than 3.5 billion years ago.

To achieve these new goals, the rover has a suite of cutting-edge science instruments.

It will seek out biosignatures on a microbial scale.

An X-ray spectrometer will target spots as small as a grain of table salt, while an ultraviolet laser will detect the “glow” from excited rings of carbon atoms.

A ground-penetrating radar will look under the surface of Mars, mapping layers of rock, water and ice up to 10 metres deep, depending on the material.

The rover is getting some upgraded Curiosity hardware, including colour cameras, a zoom lens and a laser that can vaporise rocks and soil to analyse their chemistry, NASA said.

The mission will also undertake a marathon sample hunt.

The rover team will try to drill at least 20 rock cores, and possibly as many as 30 or 40, for possible future return to Earth, NASA said.

Site selection has been another milestone for the mission. In February, the science community narrowed the list of potential landing sites from eight to three.

All three sites have rich geology and may potentially harbour signs of past microbial life. But a final landing site decision is still more than a year away.

“In the coming years, the 2020 science team will be weighing the advantages and disadvantages of each of these sites,” Farley said.

“It is by far the most important decision we have ahead of us,” Farley said.

The mission is set to launch in July/August 2020. (IANS)

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

NASA’s Curiosity Rover Captures Images of Martian Dust Storm

The last storm of global magnitude that enveloped Mars was in 2007, five years before Curiosity landed there

0
NASA image.
NASA's Curiosity Rover Captures Images of Martian Dust Storm. Pixabay

With NASA engineers yet to make contact with the Opportunity Mars rover due to a massive storm on the Red Planet, scientists are pinning their hopes on learning more about Martian dust storms from images captured by the Curiosity probe.

As of Tuesday morning, the Martian dust storm had grown in size and was officially a “planet-encircling” (or “global”) dust event, NASA said in a statement on Wednesday.

Though Curiosity is on the other side of Mars from Opportunity, dust has steadily increased over it, more than doubling over the weekend, NASA said.

The US space agency said the Curiosity Rover this month used its Mast Camera, or Mastcam, to snap photos of the intensifying haziness of the surface of Mars caused by the massive dust storm.

For NASA’s human scientists watching from the ground, Curiosity offers an unprecedented window to answer some questions. One of the biggest: Why do some Martian dust storms last for months and grow massive, while others stay small and last only a week?

“We don’t have any good idea,” said Scott Guzewich, an atmospheric scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Mars Rover
Mars Rover, Pixabay

Curiosity, he pointed out, plus a fleet of spacecraft in the orbit of Mars, will allow scientists for the first time to collect a wealth of dust information both from the surface and from space.

The last storm of global magnitude that enveloped Mars was in 2007, five years before Curiosity landed there.

The current storm has starkly increased dust at Gale Crater, where the Curiosity rover is studying the storm’s effects from the surface.

But it poses little risk to the Curiosity rover, said Curiosity’s engineers at NASA’s Jet Propulsion Laboratory in Pasadena, California.

Also Read: NASA Plans To Install An Instrument To Monitor Plant Water Use

However, there was still no signal from the Opportunity rover, although a recent analysis of the rover’s long-term survivability in Mars’ extreme cold suggests Opportunity’s electronics and batteries can stay warm enough to function.

Regardless, the project does not expect to hear from Opportunity until the skies begin to clear over the rover.

The dust storm is comparable in scale to a similar storm observed by Viking I in 1977, but not as big as the 2007 storm that Opportunity previously weathered. (IANS)

Next Story