Tuesday December 10, 2019
Home Lead Story “It Is ...

“It Is A More Rugged Surface Than We Predicted,” NASA’s Plan to Scoop Up Dirt from Asteroid Hits Complication

A Japanese spacecraft, Hayabusa2, touched down on another asteroid in February, also on a mission to collect material. Japan managed to return some tiny particles in 2010 from its first asteroid mission.

0
//
NASA
This artist's rendering made available by NASA in July 2016 shows the mapping of the near-Earth asteroid Bennu by the OSIRIS-REx spacecraft. VOA

NASA’s plan to scoop up dirt and gravel from an asteroid has hit a snag, but scientists say they can overcome it.

The asteroid Bennu was thought to have wide, open areas suitable for the task. But a recently arrived spacecraft revealed the asteroid is covered with boulders and there don’t seem to be any big, flat spots that could be used to grab samples.

In a paper released Tuesday by the journal Nature, scientists say they plan to take a closer look at a few smaller areas that might work. They said sampling from those spots poses “a substantial challenge.”

“But I am confident this team is up to that substantial challenge,” the project’s lead scientist, Dante Lauretta, told reporters at a news conference Tuesday.

The spacecraft, called Osiris-Rex, is scheduled to descend close to the surface in the summer of 2020. It will extend a robot arm to pick up the sample, which will be returned to Earth in 2023. The spacecraft began orbiting Bennu at the end of last year, after spending two years chasing down the space rock.

FILE - This Nov. 16, 2018, image provide by NASA shows the asteroid Bennu.
This Nov. 16, 2018, image provide by NASA shows the asteroid Bennu. VOA

When the mission was planned, scientists were aiming to take dirt and gravel from an area measuring at least 55 yards (50 meters) in diameter that was free of boulders or steep slopes, which would pose a hazard.

“It is a more rugged surface than we predicted,” said Lauretta, of the University of Arizona in Tucson and one of the paper’s authors. But he said he believed a sample could still be collected.

NASA project manager Rich Burns said a spot will be chosen this summer and the setback won’t delay the sampling.

Patrick Taylor, who studies asteroids at the Lunar and Planetary Institute in Houston but didn’t participate in the spacecraft mission, noted in a telephone interview that the spacecraft was evidently maneuvering more accurately and precisely than had been expected.

“That gives me confidence they will be able to attempt a sample acquisition,” he said.

NASA
NASA project manager Rich Burns said a spot will be chosen this summer and the setback won’t delay the sampling. VOA

Also Read: To Ensure Transparency, WHO Panel Aims for Registry of All Human Gene-Editing Research

Bennu is 70 million miles (110 million kilometers) from Earth. It’s estimated to be just over 1,600 feet (500 meters) across and is the smallest celestial body ever orbited by a spacecraft.

A Japanese spacecraft, Hayabusa2, touched down on another asteroid in February, also on a mission to collect material. Japan managed to return some tiny particles in 2010 from its first asteroid mission. (VOA)

Next Story

This NASA-ISRO Mission Set to Crunch Key Space Data in Cloud

"Interest in space helps everybody. And there's a lot of commercial interest now. I think if there is a business to be made, commercial space will do that. When there is no business to be made that no one can make money, then the government should do that

0
University of Iowa, Radiation, Sun
FILE - Tourists take pictures of a NASA sign at the Kennedy Space Center visitors complex in Cape Canaveral, Florida, April 14, 2010. VOA

By NISHANT ARORA

As the humankind aims for deeper space missions like Mars in couple of years from now, the time is to democratize humongous data available via NASA and space agencies like the Indian Space Research organization (ISRO) that can boost space research via next-gen Cloud computing, a top NASA-JPL official has stressed.

Scheduled for launch from Sriharikota launch facility in Andhra Pradesh in 2022, the NASA-ISRO Synthetic Aperture Radar (NISAR) mission is a joint project between the US and Indian space agencies to co-develop and launch a dual-frequency synthetic aperture radar on an Earth observation satellite. The satellite will be the first radar imaging one to use dual frequencies (L and S Band).

ISRO is likely to spend Rs 788 crore while JPL’s work share is expected to be over $800 million on this key project.

Using advanced radar imaging that will provide an unprecedented, detailed view of Earth, NISAR satellite is designed to observe and take measurements of some of the planet’s most complex processes — ecosystem disturbances, ice-sheet collapse and natural hazards such as earthquakes, tsunamis, volcanoes and landslides.

Artificial Intelligence and Machine Learning-driven Cloud computing is certainly going to make the key difference once the satellite is up and running.

“NISAR is going to generate 100 terabytes per day. That’s a lot of data. It’s about a hundred times more than anything we’ve ever done together. It doesn’t fit in our data centres. So we have to put it in the Cloud,” Tom Soderstrom, Chief Innovation and Technology Officer, NASA JPL (Jet Propulsion Laboratory), told IANS during an interaction here.

“The data needs to be worked on for the Indian space agency with several others including NASA. Having it in the Cloud gives us a good place to store, analyse and parse it right for the benefit of humankind,” Soderstrom added.

The Jet Propulsion Laboratory is a federally-funded research and development center in Pasadena, California.

“For our science data processing part, we discovered that we could use GPUs (graphic processing units) which were never done before. So, for NISAR, we tried GPUs and realized that it’s better, sometimes 100 times better, based on what you’re doing and overall four times faster,” Soderstrom explained.

ISRO
Indian Space Research Organization (ISRO) Chairman K. Sivan, left, and Junior Indian Minister for Department of Atomic Energy and Space Jitendra Singh address a news conference in New Delhi. VOA

The data collected from NISAR mission will reveal information about the evolution and state of Earth’s crust, help scientists better understand our planet’s processes and changing climate, and aid future resource and hazard management.

According to Soderstrom, now they can not only process data much faster but also switch between CPUs and GPUs, whichever is the cheapest.

“Cloud will help us process the data differently. Now, you have lots of interesting data for different spacecrafts. We can now apply machine learning to see trends — both in the science and telemetry data,” said the NASA-JPL executive.

At JPL, everyone has intelligent digital assistant Alexa at his or her desk, helping the staffers organise daily tasks while making sense of intrinsic data-sets.

“An intelligent digital assistant has two pieces to it. It knows who I am and also knows how long I’ve been there, meaning it knows my role. So it can tell me things that I need to know before I even know I need them. You can ask Alexa simple things like when is NISAR launching or how much data it is producing on a daily basis, or where my source data is coming from,” Soderstrom explained.

Alexa can tell you about the mission’s budget. It can tell you about the compute environment and “we can speak to it, type to it or text to it. We apply machine learning to make Alexa smarter and smarter over time”.

Also Read: Being a Part of UNICEF as Goodwill Ambassador is a Lifetime Privilege, Says Priyanka Chopra Jonas

Soderstrom is also bullish on space collaborations between countries to create a better world.

“Interest in space helps everybody. And there’s a lot of commercial interest now. I think if there is a business to be made, commercial space will do that. When there is no business to be made that no one can make money, then the government should do that.

“If space becomes the business, then let the business people do it like Elon Musk began by transporting things to the International Space Station (ISS). JPL, on the other hand, wants to go and do things that have never been done before. So if people can go to the moon and mine it, so be it. Once Mars becomes commonplace, we’re going to Jupiter’s moon Europa in search of life,” elaborated Soderstrom. (IANS)