Saturday December 14, 2019
Home Lead Story New Technolog...

New Technology Developed to Study Marine Life

The patch called Marine Skin is based on stretchable silicone elastomers that can withstand twisting, shearing and stretching, even when exposed to high pressures in deep waters.

0
//
Their long-term aim is to achieve reliable performance when Marine Skin is attached for up to a year on individual animals of diverse types.
Marine Life, Wikimedia Commons

Scientists have developed a thin smart patch that can withstand twisting, shearing and stretching, even when exposed to high pressures in deep waters and could make studying the behaviour of marine animals easier and more informative.

The patch called Marine Skin is based on stretchable silicone elastomers that can withstand twisting, shearing and stretching, even when exposed to high pressures in deep waters.

“The integrated flexible electronics can track an animal’s movement and diving behaviour and the health of the surrounding marine environment in real time,” said Joanna Nassarm, who was a PhD student in the King Abdullah University of Science and Technology (KAUST) in Saudi Arabia at the time of the research.

Read also: Robot-assisted Tumour Surgery Performed for the First Time in India

Being able to monitor and record a range of environmental parameters is vital in the study of marine ecosystems. Yet existing systems for tracking animals in the sea are bulky and uncomfortable for animals to wear.

Marine Skin has been tested and demonstrated when glued onto a swimming crab, Portunus pelagicus, but is suitable for tagging a wide range of sea creatures.
Marine Life under study by use of Technology, Wikimedia Commons

“Using simple design tricks and soft materials, we were able to beat the current standard systems in terms of non-invasiveness, weight, operational lifetime and speed of operation,” said Nassar, who is now at California Institute of Technology in the US.

“In the current prototype, the location data is supplemented by recordings of water temperature and salinity. Additional sensing capabilities could be added in future,” he said.

“Possibilities include sensing the physiological state of the tagged animals. This would allow information about ocean chemistry to be correlated with the heath and activity of even small animals as they move around in their habitat,” he added.

The data is currently retrieved via wireless connection when the tag is removed. In future, the researchers hope to develop remote data retrieval procedures by overcoming the problems of transmitting signals through water.

Marine Skin has been tested and demonstrated when glued onto a swimming crab, Portunus pelagicus, but is suitable for tagging a wide range of sea creatures.

The team plans to move on to studies with dolphins and whale sharks. Their long-term aim is to achieve reliable performance when Marine Skin is attached for up to a year on individual animals of diverse types. (IANS)

Next Story

Scientists Create Map of Wind Circulation in the Upper Atmosphere of Mars

Scientists map winds in Mars' upper atmosphere for first time

0
Mars
The new map of Mars winds helps scientists to better understand the workings of the Martian climate. (Representational image). Pixabay

Using data from NASA’s MAVEN spacecraft, researchers have created the first-ever map of wind circulation in the upper atmosphere of Mars.

The new map of Mars winds helps scientists to better understand the workings of the Martian climate, giving them a more accurate picture of its ancient past and its ongoing evolution.

“The observed global circulation provides critical inputs needed to constrain global atmospheric models,” said Mehdi Benna of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“These are the same models that are used to extrapolate the state of the Martian climate into the distant past,” added Benna in the first paper published in the journal Science.

MAVEN (Mars Atmosphere and Volatile EvolutioN mission) celebrated the five-year anniversary of its entrance into orbit around Mars on September 21.

Mission Mars
The winds observed in the Martian upper atmosphere are sometimes similar to what we see in global model simulations. (Representational image). Pixabay

The primary scientific goal of the mission is to study what is left of Mars’ atmosphere to determine how, in the distant past, an ocean-covered and potentially habitable Mars became the dry and desolate place it is today.

“The winds observed in the Martian upper atmosphere are sometimes similar to what we see in global model simulations, but other times can be quite different,” said Kali Roeten of University of Michigan.

“These winds can also be highly variable on the timescale of hours, yet in other cases, are consistent throughout the observation period, said Roeten in the second paper published in the Journal of Geophysical Research-Planets.

Upper atmospheric winds on Earth have already been mapped in detail.

Winds drive a series of processes in the atmosphere that can affect the propagation of radio waves, which are crucial for communications purposes for those on the surface, and the prediction of paths satellites will take in their orbit around Earth.

Mapping Martian winds, therefore, is a crucial step towards understanding characteristics of extraterrestrial atmospheres beyond what we know about processes on Earth.

Also Read- Google Assistant Rolls out Interpreter Mode for Smartphones

The upper atmospheric winds on both Earth and Mars are in the planets’ respective thermospheres, which are areas where temperature increases with height.

This discovery was the first detection of topography-induced gravity wave ripples in the thermosphere of any planet, even Earth. (IANS)