Monday June 25, 2018
Home Lead Story Could our sol...

Could our solar system be made of bubbles?

0
//
49
Solar system could have formed in the bubbles produced by a giant, long-dead star
Could our solar system be formed of bubbles around the massive star? wikimedia commons
Republish
Reprint

New York, Dec 26, 2017: Floating a new theory about the birth of our solar system, a new study says that it could have formed in the bubbles produced by a giant, long-dead star which was more than 40 to 50 times the size of our own Sun.

Despite the many impressive discoveries humans have made about the universe, scientists are yet to come to a consensus about the birth story of our solar system.

The general prevailing theory is that our solar system formed billions of years ago near a supernova.

But the new scenario, detailed in the Astrophysical Journal, instead begins with a giant type of star called a Wolf-Rayet star.

They burn the hottest of all stars, producing tonnes of elements which are flung off the surface in an intense stellar wind.

As the Wolf-Rayet star sheds its mass, the stellar wind plows through the material that was around it, forming a bubble structure with a dense shell.

“The shell of such a bubble is a good place to produce stars,” because dust and gas become trapped inside where they can condense into stars, said study co-author Nicolas Dauphas, Professor at University of Chicago in the US.

The researchers estimate that one to 16 per cent of all Sun-like stars could be formed in such stellar nurseries.

The study addresses a nagging cosmic mystery about the abundance of two elements in our solar system compared to the rest of the galaxy.

Meteorites left over from the early solar system suggests there was a lot of aluminium-26.

In addition, studies increasingly suggest we had less of the isotope iron-60.

This brings scientists up short, because supernovae produce both isotopes.

“It begs the question of why one was injected into the solar system and the other was not,” said co-author Vikram Dwarkadas from University of Chicago.

This brought the scientists to Wolf-Rayet stars, which release lots of aluminium-26, but no iron-60.

As for the fate of the giant Wolf-Rayet star, the researchers believe that its life ended long ago, likely in a supernova explosion or a direct collapse to a black hole. (IANS)

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

First Carbon Rich Asteroid Found in Kuiper Belt

The researchers found that the asteroid's reflectance spectrum -- the specific pattern of wavelengths of light reflected from an object -- was different to that of similar small Kuiper Belt Objects (KBOs), which typically have uninteresting, featureless spectra that reveal little information about their composition.

0
This object, designated 2004 EW95, likely formed in the asteroid belt between Mars and Jupiter and has been flung billions of kilometres from its origin to its current home in the Kuiper Belt, the study said.
Astronomers find first carbon-rich asteroid in Kuiper Belt, pixabay

Astronomers have discovered an unusual carbon-rich asteroid in the Kuiper Belt — the first of its kind to be confirmed in the cold outer reaches of the solar system.

This object, designated 2004 EW95, likely formed in the asteroid belt between Mars and Jupiter and has been flung billions of kilometres from its origin to its current home in the Kuiper Belt, the study said.

The researchers found that the asteroid’s reflectance spectrum — the specific pattern of wavelengths of light reflected from an object — was different to that of similar small Kuiper Belt Objects (KBOs), which typically have uninteresting, featureless spectra that reveal little information about their composition.

“The reflectance spectrum of 2004 EW95 was clearly distinct from the other observed outer Solar System objects,” explained lead author Tom Seccull of Queen’s University Belfast in Britain

“It looked enough of a weirdo for us to take a closer look,” Seccull added.

In particular, these models suggest that the Kuiper Belt -- a cold region beyond the orbit of Neptune -- should contain a small fraction of rocky bodies from the inner solar system, such as carbon-rich asteroids, referred to as carbonaceous asteroids.
representational image, pixabay

Theoretical models of the early days of our solar system predict that after the gas giants formed they rampaged through the solar system, ejecting small rocky bodies from the inner solar system to far-flung orbits at great distances from the Sun.

In particular, these models suggest that the Kuiper Belt — a cold region beyond the orbit of Neptune — should contain a small fraction of rocky bodies from the inner solar system, such as carbon-rich asteroids, referred to as carbonaceous asteroids.

The new study, published in The Astrophysical Journal, presented evidence for the first reliably-observed carbonaceous asteroid in the Kuiper Belt, providing strong support for these theoretical models of our solar system’s troubled youth.

Also Read: NASA Chief: Moon Mission a Step Forward to Reach Mars 

After measurements from multiple instruments at European Southern Observatory’s Very Large Telescope (VLT), the team of astronomers was able to measure the composition of the object.

The results suggest that it originally formed in the inner solar system and must have since migrated outwards. (IANS)

Next Story