Monday April 22, 2019
Home Science & Technology Oxford Univer...

Oxford University Scientists have discovered 320 million year-old fossil containing oldest plant root cell

The fossils studied during the research are the remains of the soil from the first giant tropical rainforests on Earth

0
//
Scientists in laboratory Image source: Wikimedia commons

Oxford University Herbaria has found in a fossilized root tip, the cells which gave rise to the roots of an ancient plant. The researchers also found, it is the first ever actively growing fossilized root i.e an ancient plant frozen in time. The study is published in the journal Current Biology.

Follow NewsGram at Twitter: @newsgram1

‘I was examining one of the fossilised soil slides held at the University Herbaria as part of my research into the rooting systems of ancient trees when I noticed a structure that looked like the living root tips we see in plants today. I began to realize that I was looking at a population of 320 million-year-old plant stem cells preserved as they were growing — and that it was the first time anything like this had ever been found. It gives us a unique window into how roots developed hundreds of millions of years ago.’ Oxford Plant Sciences PhD student Alexander (Sandy) Hetherington, who made the discovery during the course of his research, said.

800px-03-09_Mnium1
Plant cells. Image source: Wikimedia

These stem cells are located in the meristems (in plants at the tips of roots and shoots) of multicellular organisms. These stem cells are renewing cells which form these organisms. The 320 million-year-old stem cells discovered are different to all those living today, with a unique pattern of cell division that remained unknown until now. That tells us that some of the mechanisms controlling root formation in plants and trees have now become extinct and may have been more diverse than thought.

These roots were important because they comprised the rooting structures of the plants growing in Earth’s first global tropical wetland forests with tall trees over 50m in height and were in part responsible for one of the most dramatic climate change events in history. The evolution of deep rooting systems increased the rate of chemical weathering of silicate minerals in rocks — a chemical reaction that pulled CO2 out of the atmosphere, leading to the cooling of Earth and thus one of the planet’s great ice ages.

Follow NewsGram at Facebook: NewsGram

The fossils studied during this research are the remains of the soil from the first giant tropical rainforests on Earth. The rock in which the soil is preserved formed in the Carboniferous swamps that gave rise to the coal sources spanning what is now Appalachia to central Europe, including the coal fields in Wales, northern England and Scotland.

Sandy has named the stem-cell fossil Radix carbonica (Latin for ‘coal root’).

‘These fossils demonstrate how the roots of these ancient plants grew for the first time. It is startling that something so small could have had such a dramatic effect on Earth’s climate. This discovery also shows the importance of collections such as the Oxford University Herbaria — they are so valuable, and we need to maintain them for future generations.’ says Professor Liam Dolan, Head of the Department of Plant Sciences at Oxford University and senior author of the paper.

-by Vrushali Mahajan, an intern at NewsGram. Twitter @Vrushali Mahajan 

ALSO READ:

Next Story

Researchers Develop, New Adhesive Patch That Can Minimize Heart Attack Damage

For the research, published in Nature Biomedical Engineering, the team tested the patch with rats and showed that the patch could be effective in reducing post-heart attack damage. 

0
Heart
The researchers said the patch, which costs "less than a penny", has been optimised using a computer model of the heart to perfectly match the material's mechanical properties. Pixabay

Researchers have developed a new adhesive patch that could reduce the stretching of cardiac muscle following a heart attack.

Developed by a team of researchers from Brown University, US; Fudan University, China and Soochow University, China, the patch is made from a water-based hydrogel material and can be placed directly on the heart to prevent left ventricular remodelling — a stretching of the heart muscle.

A heart attack puts the cardiac muscle at a risk of stretching out that can reduce the functioning of the heart’s main pumping chamber.

ecg
The researchers say the initial results are promising for eventual use in human clinical trials. Pixabay

“Part of the reason that it’s hard for the heart to recover after a heart attack is that it has to keep pumping,” said co-author Huajian Gao, a professor at Brown University.

“The idea here is to provide mechanical support for damaged tissue, which hopefully gives it a chance to heal,” he added.

The researchers said the patch, which costs “less than a penny”, has been optimised using a computer model of the heart to perfectly match the material’s mechanical properties.

“If the material is too hard or stiff, then you could confine the movement of the heart so that it can’t expand to the volume it needs to,” Gao said.

“But if the material is too soft, then it won’t provide enough support. So we needed some mechanical principles to guide us,” he pointed out.

For the research, published in Nature Biomedical Engineering, the team tested the patch with rats and showed that the patch could be effective in reducing post-heart attack damage.

heart
A heart attack puts the cardiac muscle at a risk of stretching out that can reduce the functioning of the heart’s main pumping chamber. Pixabay

“The patch provided nearly optimal mechanical supports after myocardial infarction (i.e. massive death of cardiomyocytes),” said co-author Ning Sun, a cardiology researcher at Fudan University.

“[It] maintained a better cardiac output and thus greatly reduced the overload of those remaining cardiomyocytes and adverse cardiac remodelling.”

Also Read: China’s Political System Helps It To Take A Lead in Artificial Intelligence

The researchers say the initial results are promising for eventual use in human clinical trials.

“It remains to be seen if it will work in humans, but it’s very promising,” Gao said. (IANS)