Sunday November 17, 2019
Home Environment Toxicity in A...

Toxicity in Air Affects Children’s Brain Development: UNICEF

UNICEF has warned that air pollution affects a child's brain development

0
//
Brain Development
According to UNICEF Executive Director Henrietta Fore, air pollution toxicity can affect children's brain development. Pixabay

Unicef Executive Director Henrietta Fore has warned that air pollution toxicity can affect children’s brain development and called for urgent action to deal with the crisis gripping India and South Asia.

“I saw first-hand how children continue to suffer from the dire consequences of air pollution,” Fore, who recently visited India, said on Wednesday.

“The air quality was at a crisis level. You could smell the toxic fog even from behind an air filtration mask,” she added.

Air pollution affects children most severely and its effects continue all their lives because they have smaller lungs, breathe twice as fast as adults and lack immunities, Fore said.

Brain Development
Air pollution damages brain tissue and undermines brain development in babies and young children. Pixabay

She added that it “damages brain tissue and undermines cognitive development in babies and young children, leading to lifelong consequences that can affect their learning outcomes and future potential. There is evidence to suggest that adolescents exposed to higher levels of air pollution are more likely to experience mental health problems”.

“Unicef is calling for urgent action to address this air quality crisis,” affecting 620 million children in South Asia.

Also Read- Snowfall in Jammu and Kashmir to Help Bring Pollution Down in Neighbouring States

Schools were closed in Delhi till Tuesday because of the severe environmental situation caused by post-harvest burning of stubble in neighbouring states.

The Air Quality Index (AQI) on Sunday touched 625, considered “severe plus” level. (IANS)

Next Story

Immune Cells Become Active and Repair Brain While Sleep: Study

For the findings, researchers conducted the study on mice

0
Sleep
Study suggests that the enhanced remodeling of neural circuits and repair of lesions during Sleep may be mediated in part by the ability of microglia to dynamically interact with the Brain. Pixabay

Researchers have found that immune cells called microglia, which play an important role in reorganising the connections between nerve cells, fighting infections, and repairing damage, are also primarily active while we sleep.

Microglia serve as the brain’s first responders, patrolling the brain and spinal cord and springing into action to stamp out infections or gobble up debris from dead cell tissue.

“This research shows that the signals in our brain that modulate the sleep and awake state also act as a switch that turns the immune system off and on,” said study lead author Ania Majewska, Professor at University of Rochester in the US.

In previous studies, Majewska’s lab has shown how microglia interact with synapses, the juncture where the axons of one neuron connects and communicates with its neighbours.

The microglia help maintain the health and function of the synapses and prune connections between nerve cells when they are no longer necessary for brain function.

For the findings, researchers conducted the study on mice.

The current study points to the role of norepinephrine, a neurotransmitter that signals arousal and stress in the central nervous system.

This chemical is present in low levels in the brain while we sleep, but when production ramps up it arouses our nerve cells, causing us to wake up and become alert.

The study showed that norepinephrine also acts on a specific receptor, the beta2 adrenergic receptor, which is expressed at high levels in microglia.

When this chemical is present in the brain, the microglia slip into a sort of hibernation.

Sleep
Researchers have found that immune cells called microglia, which play an important role in reorganising the connections between nerve cells, fighting infections, and repairing damage, are also primarily active while we Sleep and affects Brain. Pixabay

The study, which employed an advanced imaging technology that allows researchers to observe activity in the living brain, showed that when mice were exposed to high levels of norepinephrine, the microglia became inactive and were unable to respond to local injuries and pulled back from their role in rewiring brain networks.

“This work suggests that the enhanced remodeling of neural circuits and repair of lesions during sleep may be mediated in part by the ability of microglia to dynamically interact with the brain,” said study first author Rianne Stowell.

ALSO READ: Scientists Link ‘Brain Fog’ to Body Illness

“Altogether, this research also shows that microglia are exquisitely sensitive to signals that modulate brain function and that microglial dynamics and functions are modulated by the behavioural state of the animal,” Stowell said.

The study was published in the journal Nature Neuroscience. (IANS)