Thursday November 21, 2019

Researchers Discover Viruses in Kitchen Sponges that can Kill Bacteria

A kitchen sponge is exposed to all kinds of different microbes, thus forming a vast microbiome of bacteria and providing rich food sources for phages

0
//
viruses, kitchen sponges
A kitchen sponge is exposed to all kinds of different microbes, thus forming a vast microbiome of bacteria and providing rich food sources for phages. Pixabay

The US researchers have discovered viruses that can infect bacteria in kitchen sponges, which may prove useful in fighting bacteria that cannot be killed by antibiotics alone.

The study presented on Sunday at American Society for Microbiology’s annual meeting showed that two researchers used the bacteria as bait and identified two phages or bacteria-eating organisms, which could swallow bacteria from their own used kitchen sponges, the Xinhua news agency reported.

A kitchen sponge is exposed to all kinds of different microbes, thus forming a vast microbiome of bacteria and providing rich food sources for phages. “Our study illustrates the value in searching any microbial environment that could harbor potentially useful phages,” said Brianna Weiss, a life sciences student at New York Institute of Technology, in a statement.

kitchen sponges, viruses
Researchers used the bacteria as bait and identified two phages or bacteria-eating organisms, which could swallow bacteria from their own used kitchen sponges. Pixabay

The researchers swapped the two phages to see if they could infect the other person’s isolated bacteria and they found the phages did kill the other’s bacteria. They compared the DNA of both isolated strains and discovered that they belong to a rod-shaped group of microbes commonly found in feces. Some of those microbes could cause infections in hospital settings.

ALSO READ: Study: Not Only Animal Meat, Veggies Also Transmit Anitibiotic-Resistant Bacteria to Human Gut

Although the two bacterial strains are closely related, the researchers found chemical variations between them when performing biochemical testing, which revealed that those phages are not picky eaters.

“These differences are important in understanding the range of bacteria that a phage can infect, which is also key to determining its ability to treat specific antibiotic-resistant infections,” said Weiss. (IANS)

Next Story

Microorganisms Living In The Gut May Alter The Ageing Process

A new study says that the microorganisms found living in the gut may alter ageing process

0
Microorganisms
Researchers have found that microorganisms living in the gut may alter the ageing process. Pixabay

Researchers have found that microorganisms living in the gut may alter the ageing process, which could lead to the development of food-based treatment to slow it down.

All living organisms, including human beings, coexist with a myriad of microbial species living in and on them, and research conducted over the last 20 years has established their important role in nutrition, physiology, metabolism and behaviour.

“We’ve found that microbes collected from an old mouse have the capacity to support neural growth in a younger mouse,” said study researcher Sven Pettersson from Nanyang Technological University in Singapore.

“This is a surprising and very interesting observation, especially since we can mimic the neuro-stimulatory effect by using butyrate alone,” Pettersson added.

Using mice, the research team transplanted gut microbes from old mice (24 months old) into young, germ-free mice (six weeks old).

After eight weeks, the young mice had increased intestinal growth and production of neurons in the brain, known as neurogenesis.

The team showed that the increased neurogenesis was due to an enrichment of gut microbes that produce a specific short chain fatty acid, called butyrate.

Butyrate is produced through microbial fermentation of dietary fibres in the lower intestinal tract and stimulates production of a pro-longevity hormone called FGF21, which plays an important role in regulating the body’s energy and metabolism.

Microorganisms, mice
Using mice, the research team transplanted gut microorganisms from old mice into young, germ-free mice. Pixabay

As we age, butyrate production is reduced.

The researchers then showed that giving butyrate on its own to the young germ-free mice had the same adult neurogenesis effects.

“These results will lead us to explore whether butyrate might support repair and rebuilding in situations like stroke, spinal damage and to attenuate accelerated ageing and cognitive decline,” Pettersson said.

The team also explored the effects of gut microbe transplants from old to young mice on the functions of the digestive system.

With age, the viability of small intestinal cells is reduced, and this is associated with reduced mucus production that make intestinal cells more vulnerable to damage and cell death.

However, the addition of butyrate helps to better regulate the intestinal barrier function and reduce the risk of inflammation.

Also Read- Syska Launches An Anti-Bacterial LED Bulb

The team found that mice receiving microbes from the old donor gained increases in length and width of the intestinal villi – the wall of the small intestine. In addition, both the small intestine and colon were longer in the old mice than the young germ-free mice.

The discovery shows that gut microbes can compensate and support an ageing body through positive stimulation. (IANS)