Scientists develop artificial intelligence system “DeepStack” that can beat expert Poker players

Scientists develop artificial intelligence system “DeepStack” that can beat expert Poker players
Published on
Updated on

Toronto March 5, 2017: A team of scientists has developed an artificial intelligence system called DeepStack that recently defeated professional poker players.

The team of computing scientists from University of Alberta's Computer Poker Research Group, including researchers from Charles University in Prague and Czech Technical University, said DeepStack bridges the gap between approaches used for games of perfect information with those used for imperfect information games.

NewsGram brings to you current foreign news from all over the world.

"Poker has been a longstanding challenge in artificial intelligence," said Michael Bowling from the University of Alberta, Canada, in the paper published in the journal Science.

"It is the quintessential game of imperfect information in the sense that the players don't have the same information or share the same perspective while they are playing," Bowling added.

Imperfect information games are a general mathematical model that describes how decision-makers interact. Artificial intelligence research has a storied history of using parlour games to study these models, but attention has been focused primarily on perfect information games.

NewsGram brings to you top news around the world today.

"We need new AI techniques that can handle cases where decision-makers have different perspectives," Bowling noted.

DeepStack extends the ability to think about each situation during play — which has been famously successful in games like checkers, chess, and Go — to imperfect information games using a technique called continual re-solving.

Check out NewsGram for latest international news updates.

This allows DeepStack to determine the correct strategy for a particular poker situation without thinking about the entire game by using its "intuition" to evaluate how the game might play out in the near future.

"We train our system to learn the value of situations," Bowling said.

According to him, each situation itself is a mini poker game. Instead of solving one big poker game, it solves millions of these little poker games, each one helping the system to refine its intuition of how the game of poker works. (IANS)

NewsGram Journalism Certification Program



NewsGram invites you to join our exclusive Certification Program designed to help you excel in Journalism and Content Creation!

What You Get:

✅ Author Profile/Byline – Your own author page on NewsGram📝
✅ Certificate – Official recognition of your expertise 🎓
✅ Live Classes – Weekend sessions + One-on-one sessions on weekdays 🎥👨‍🏫
✅ Article Publication – Publish for free under expert mentorship 📰✍️
✅ Freelancing Opportunity – Potential to work with NewsGram in the future 💼🚀


📅 Limited slots available! Take the next step in your career and gain hands-on experience in digital media content writing.


Apply right now with a mail to education@newsgram.com

For more details, see the Course Guide.

Related Stories

No stories found.
logo
NewsGram
www.newsgram.com