Experimental Brain Implant Lets Man With Paralysis Turn His Thoughts Into Words

UCSF researchers surgically implanted a high-density electrode array over the patient's speech motor cortex
UCSF researchers surgically implanted a high-density electrode array over the patient's speech motor cortex

US researchers have successfully developed a "speech neuroprosthesis" that has enabled a man with severe paralysis to communicate in sentences, translating signals from his brain to the vocal tract directly into words that appear as text on a screen. The technology, developed by researchers from the University of California-San Francisco (UCSF), was able to decode words from brain activity at a rate of up to 18 words per minute with up to 93 percent accuracy.

In his late 30s, the man suffered a devastating brainstem stroke more than 15 years ago that severely damaged the connection between his brain and his vocal tract and limbs. Since his injury, he has had an extremely limited head, neck, and limb movements, and communicates by using a pointer attached to a baseball cap to poke letters on a screen. UCSF researchers surgically implanted a high-density electrode array over the patient's speech motor cortex and recorded 22 hours of neural activity in this brain region over 48 sessions and several months.

Follow NewsGram on Instagram to keep yourself updated.

The electrodes recorded his thoughts as brain signals, which were then translated into specific intended words using artificial intelligence. The team thus created a 50-word vocabulary — which includes words such as "water," "family," and "good" — which they could recognize from brain activity using advanced computer algorithms.


UCSF researchers surgically implanted a high-density electrode array over the patient's speech motor cortex

Photo by Robina Weermeijer on Unsplash

"To our knowledge, this is the first successful demonstration of direct decoding of full words from the brain activity of someone who is paralyzed and cannot speak," said Edward Chang, Professor, and neurosurgeon at the UCSF. "It shows strong promise to restore communication by tapping into the brain's natural speech machinery," Chang added. The study is detailed in the New England Journal of Medicine.

ALSO READ: Unlocking secrets of memory in brain

Further, to test their approach, the team first presented the patient with short sentences constructed from the 50 vocabulary words and asked him to try saying them several times. As he made his attempts, the words were decoded from his brain activity, one by one, on a screen. Then the team switched to prompting him with questions such as "How are you today?" and "Would you like some water?" As before, the patient's attempted speech appeared on the screen. "I am very good," and "No, I am not thirsty."

"We were thrilled to see the accurate decoding of a variety of meaningful sentences. We've shown that it is actually possible to facilitate communication in this way and that it has potential for use in conversational settings," said lead author David Moses, a postdoctoral engineer in Chang's lab. (IANS/JC)

Related Stories

No stories found.
logo
NewsGram
www.newsgram.com