Tuesday June 25, 2019
Home Lead Story NASA Preparin...

NASA Preparing to Launch Twin Sisters to Study Signal Disruption from Space

The plasma of the ionosphere is mixed in with neutral gases, like the air we breathe, so the Earth’s upper atmosphere — and the bubbles that form there — respond to a complicated mix of factors

0
//
nasa, astronauts, mission
Cosmonaut Alexey Ovchinin and NASA astronauts Christina Koch and Nick Hague would continue their stay aboard the orbiting lab. VOA

NASA is preparing to launch twin satellites this month that focus on how radio signals that pass through the Earth’s upper atmosphere can be distorted by structured bubbles in this region called the ionosphere.

The twin E-TBEx CubeSats — short for Enhanced Tandem Beacon Experiment – will launch aboard a SpaceX Falcon Heavy rocket from NASAs Kennedy Space Center in Florida, the US space agency said on Monday.

Especially problematic over the equator, the radio signal distortions can interfere with military and airline communications as well as GPS signals.

Right now, scientists cannot predict when these bubbles will form or how they will change over time.

“These bubbles are difficult to study from the ground,” said Rick Doe, payload programme manager for the E-TBEx mission at SRI International, a non-profit research institute in Menlo Park, California.

space
NASA has also decided to ask the private sector to design and build a new generation of spacecrafts. Pixabay

“If you see the bubbles start to form, they then move. We’re studying the evolution of these features before they begin to distort the radio waves going through the ionosphere to better understand the underlying physics,” Doe said.

The ionosphere is that part of the Earth’s upper atmosphere where particles are ionized — meaning they are separated out into a sea of positive and negative particles called plasma.

Also Read- Chinese Smartphone Giant HONOR Launches HONOR 20 Series in India

The plasma of the ionosphere is mixed in with neutral gases, like the air we breathe, so the Earth’s upper atmosphere — and the bubbles that form there — respond to a complicated mix of factors.

What scientists learn from E-TBEx could help develop strategies to avoid signal distortion — for instance, allowing airlines to choose a frequency less susceptible to disruption, or letting the military delay a key operation until a potentially disruptive ionospheric bubble has passed, NASA said. (IANS)

Next Story

Human Sperm Retains Viability in Outer Space Conditions: Researchers

The study was presented at an annual meeting of European Society of Human Reproduction and Embryology in Vienna, Austria

0
Each sperm has 37.5MB of DNA information in it.
Each sperm has 37.5MB of DNA information in it.

Researchers have found that human sperm retains its complete viability within the different gravitational conditions found in outer space.

The results could be a huge boost to zillionaires like Amazon founder Jeff Bezos who see the “colonisation” of space as an answer to the Earth’s ever threatened resources.

“If the number of space missions increases in the coming years, and are of longer duration, it is important to study the effects of long-term human exposure to space in order to face them,” said Montserrat Boada from Dexeus Women’s Health in Barcelona, whose group worked with microgravity engineers from the Polytechnic University of Barcelona.

“It’s not unreasonable to start thinking about the possibility of reproduction beyond the Earth,” Boada said.

The study was performed using a small aerobatic training aircraft (CAP10), which can provide short-duration hypogravity exposure.

The plane executed a series of 20 parabolic manoeuvres, providing eight seconds of microgravity for each parabola.

Overall, 10 sperm samples obtained from 10 healthy donors were analysed after exposure to the different microgravities found in space and ground gravity.

To overcome regulatory constraints and increase donor numbers, sperm banks in the UK and Australia began to market the act of donating sperm as a confirmation of masculinity. Pixabay

The sperm analysis comprised a full range of measurements currently performed for fertility testing — concentration, motility, vitality, morphology and DNA fragmentation — and results found no difference whatsoever in any of the parameters between the microgravity space samples and the control group samples from Earth.

Indeed, there was 100 per cent concordance in DNA fragmentation rate and vitality, and 90 per cent concordance in sperm concentration and motility, said Boada.

These minor differences, she added, “were more probably related to heterogeneity of the sperm sample than to the effect of exposure to different gravity conditions”.

Boada described this as a preliminary study and her group will now move on to validate the results and then to larger sperm samples, longer periods of microgravity and even fresh sperm.

Also Read: Xiaomi Confirms First Smartphones Under its New CC Series

One reason for using frozen sperm in this study was the known effect of radiation on fresh sperm, Boada noted.

“Radiation impairs the quality and viability of human sperm, and these effects are expected to be greater on fresh sperm than on frozen samples,” she said.

The study was presented at an annual meeting of European Society of Human Reproduction and Embryology in Vienna, Austria. (IANS)