Friday September 21, 2018
Home Lead Story New NASA Miss...

New NASA Mission to Take First Look Deep Inside Mars

NASA Mission to Peer Into Mars’ Past

0
//
25
NASA
It was the largest gathering ever of NASA heads. Pixabay
Republish
Reprint

A powerful Atlas 5 rocket was poised for liftoff early Saturday from Vandenberg Air Force Base in California, carrying to Mars the first robotic NASA lander designed entirely for exploring the deep interior of the red planet.

The Mars InSight probe was scheduled to blast off from the central California coast at 4:05 a.m. PDT (1105 GMT), creating a luminous predawn spectacle of the first U.S. interplanetary spacecraft to be launched over the Pacific.

The lander will be carried aloft for NASA and its Jet Propulsion Laboratory (JPL) atop a two-stage, 19-story Atlas 5 rocket from the fleet of United Launch Alliance, a partnership of Lockheed Martin Corp and Boeing Co.

Also Read: Teen Finalists in NASA Competition Targeted by Hackers Based on Race

The payload will be released about 90 minutes after launch on a 301-million-mile (484 million km) flight to Mars. It is scheduled to reach its destination in six months, landing on a broad, smooth plain close to the planet’s equator called the Elysium Planitia.

InSight’s mission

That will put InSight roughly 373 miles (600 km) from the 2012 landing site of the car-sized Mars rover Curiosity. The new 800-pound (360-kg) spacecraft marks the 21st U.S.-launched Martian exploration, dating to the Mariner fly-by missions of the 1960s. Nearly two dozen other Mars missions have been launched by other nations.

An image of Mars.
Mars. Pixabay

Once settled, the solar-powered InSight will spend two years, about one Martian year, plumbing the depths of the planet’s interior for clues to how Mars took form and, by extension, the origins of the Earth and other rocky planets.

Measuring marsquakes

InSight’s primary instrument is a French-built seismometer, designed to detect the slightest vibrations from “marsquakes” around the planet. The device, to be placed on the surface by the lander’s robot arm, is so sensitive it can measure a seismic wave just one-half the radius of a hydrogen atom.

Scientists expect to see a dozen to 100 marsquakes over the course of the mission, producing data to help them deduce the depth, density and composition of the planet’s core, the rocky mantle surrounding it and the outermost layer, the crust.

The Viking probes of the mid-1970s were equipped with seismometers, too, but they were bolted to the top of the landers, a design that proved largely ineffective.

Representational image.
Representational image. Pixabay

Apollo missions to the moon brought seismometers to the lunar surface as well, detecting thousands of moonquakes and meteorite impacts. But InSight is expected to yield the first meaningful data on planetary seismic tremors beyond Earth.

Insight also will be fitted with a German-made drill to burrow as much as 16 feet (5 meters) underground, pulling behind it a rope-like thermal probe to measure heat flowing from inside the planet.

Meanwhile, a special transmitter on the lander will send radio signals back to Earth, tracking Mars’ subtle rotational wobble to reveal the size of the planet’s core and possibly whether it remains molten.

Also Read: NASA Tests Mini-Nuclear Reactors for Moon and Mars

Hitching a ride aboard the same rocket that launches InSight will be a pair of miniature satellites called CubeSats, which will fly to Mars on their own paths behind the lander in a first deep-space test of that technology. (VOA)

Click here for reuse options!
Copyright 2018 NewsGram

Next Story

NASA’s TESS Discovers New Worlds Only 5 Months After Its Launch

With four special cameras, TESS uses a detection method called transit photometry.

0
TESS
TESS, the Transiting Exoplanet Survey Satellite, is shown in this conceptual illustration obtained by Reuters on March 28, 2018. NASA sent TESS into orbit from the Kennedy Space Center in Florida aboard a SpaceX Falcon 9 rocket. VOA

A planet-hunting orbital telescope designed to detect worlds beyond our solar system discovered two distant planets this week five months after its launch from Cape Canaveral, Florida, officials said on Thursday.

NASA’s Transiting Exoplanet Survey Satellite, better known as TESS, made an early discovery of “super-Earth” and “hot Earth” planets in solar systems at least 49 light-years away, marking the satellite’s first discovery since its April launch.

TESS is on a two-year, $337 million mission to expand astronomers’ known catalog of so-called exoplanets, worlds circling distant stars.

TESS
TESS Deputy Science Director Sara Seager. VOA

While the two planets are too hot to support life, TESS Deputy Science Director Sara Seager expects many more such discoveries.

“We will have to wait and see what else TESS discovers,” Seager told Reuters. “We do know that planets are out there, littering the night sky, just waiting to be found.”

TESS is designed to build on the work of its predecessor, the Kepler space telescope, which discovered the bulk of some 3,700 exoplanets documented during the past 20 years and is running out of fuel.

NASA expects to pinpoint thousands more previously unknown worlds, perhaps hundreds of them Earth-sized or “super Earth” sized — no larger than twice as big as our home planet.

Those are believed the most likely to feature rocky surfaces or oceans and are thus considered the best candidates for life to evolve. Scientists have said they hope TESS will ultimately help catalog at least 100 more rocky exoplanets for further study in what has become one of astronomy’s newest fields of exploration.

 

TESS
An artist’s concept provided by NASA shows the Keplar Spacecraft moving through space. VOA

 

MIT researchers on Wednesday announced the discovery of Pi Mensae c, a “super-earth” planet 60 light-years away orbiting its sun every 6.3 days. The discovery of LHS 3844 b, a “hot-earth” planet 49 light-years away that orbits its sun every 11 hours, was announced on Thursday.

Pi Mensae c could have a solid surface or be a waterworld as the composition of such planets is a mixed bag, Martin Spill, NASA’s program scientist for TESS, said in a phone interview.

The two newest planets, which still need to be reviewed by other researchers, offer the chance for follow-up study, officials said.

Also Read: Parker Solar Probe of NASA Sends Back Its First Images

“That, of course, is TESS’ entire purpose — to find those planets around those brightest nearby stars to do this really detailed characterization,” Spill said.

With four special cameras, TESS uses a detection method called transit photometry, which looks for periodic dips in the visible light of stars caused by planets passing, or transiting, in front of them. (VOA)