Tuesday November 13, 2018
Home Lead Story NASA Probe Un...

NASA Probe Unveils Stormy Environment of Jupiter’s Moon

Jupiter moon Ganymede's environment unique: NASA probe

0
//
NASA, Microsoft
NASA charts roadmap for human missions to Moon, Mars. Pixabay
Republish
Reprint

The magnetic field around Jupiter’s moon Ganymede makes it unlike any other in the solar system, shows newly analysed data from NASA’s Galileo spacecraft’s first flyby of the moon two decades ago.

NASA’s Galileo spacecraft spent eight years orbiting Jupiter. During that time, the hearty spacecraft — slightly larger than a full-grown giraffe — sent back spates of discoveries on the gas giant’s moons, including the observation of a magnetic environment around Ganymede that was distinct from Jupiter’s own magnetic field.

The mission ended in 2003, but newly resurrected data from Galileo’s first flyby of Ganymede, detailed in the journal Geophysical Research Letters, offered new insights about the moon’s environment.

“We are now coming back over 20 years later to take a new look at some of the data that was never published and finish the story,” said study lead author Glyn Collinson from NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

Jupiter's dark side.
Jupiter. Pixabay

“We found there’s a whole piece no one knew about,” Collinson said.

In 1996, shortly after arriving at Jupiter, Galileo made a surprising discovery: Ganymede had its own magnetic field.

While most planets in our solar system, including Earth, have magnetic environments — known as magnetospheres — no one expected a moon to have one.

Between 1996 and 2000, Galileo made six targeted flybys of Ganymede, with multiple instruments collecting data on the moon’s magnetosphere.

The new results reveal interesting details about the magnetosphere’s unique structure.

Also Read: NASA Ready To Study Heart Of Mars

The results showed a stormy scene. Particles blasted off the moon’s icy surface as a result of incoming plasma rain, and strong flows of plasma pushed between Jupiter and Ganymede due to an explosive magnetic event occurring between the two bodies’ magnetic environments.

Scientists think these observations could be key to unlocking the secrets of the moon, such as why Ganymede’s auroras are so bright.

“There are these particles flying out from the polar regions, and they can tell us something about Ganymede’s atmosphere, which is very thin,” said Bill Paterson, a co-author of the study at NASA Goddard who served on the Galileo Plasma Science (PLS) team during the mission.

“It can also tell us about how Ganymede’s auroras form,” Paterson added.  IANS

Click here for reuse options!
Copyright 2018 NewsGram

Next Story

NASA to Send Organ-on-Chips To Test Human Tissue Health in Space

Called a micro-physiological system, a tissue chip needs three main properties

0
NASA, tissue
NASA to send tissue chips to space to test human health, genetic changes. Flcikr

NASA is planning to send small devices containing human cells in a 3D matrix — known as tissue chips or organs-on-chips — to the International Space Station (ISS) to test how they respond to stress, drugs and genetic changes.

Made of flexible plastic, tissue chips have ports and channels to provide nutrients and oxygen to the cells inside them.

The “Tissue Chips in Space” initiative seeks to better understand the role of microgravity on human health and disease and to translate that understanding to improved human health on Earth, NASA said.

“Spaceflight causes many significant changes in the human body,” said Liz Warren, Associate Program Scientist at the Center for the Advancement of Science in Space (CASIS) in the US.

Kepler, NASA, tissue
This illustration made available by NASA shows the Kepler Space Telescope. As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. VOA

“We expect tissue chips in space to behave much like an astronaut’s body, experiencing the same kind of rapid change,” Warren said.

The US space agency is planning the investigations in collaboration with CASIS and the National Center for Advancing Translational Sciences (NCATS) at the National Institutes for Health (NIH).

Many of the changes in the human body caused by microgravity resemble the onset and progression of diseases associated with ageing on Earth, such as bone and muscle loss. But the space-related changes occur much faster.

That means scientists may be able to use tissue chips in space to model changes that might take months or years to happen on Earth.

Parkinson's Disease, Kepler, NASA, tissue
A researcher takes a tissue sample from a human brain at the Multiple Sclerosis and Parkinson’s UK Tissue Bank, VOA

This first phase of Tissue Chips in Space includes five investigations. An investigation of immune system ageing is planned for launch on the SpaceX CRS-16 flight, scheduled for this year.

The other four, scheduled to launch on SpaceX CRS-17 or subsequent flights, include lung host defense, the blood-brain barrier, musculoskeletal disease and kidney function.

In addition, four more projects are scheduled for launch in summer 2020, including two on engineered heart tissue to understand cardiovascular health, one on muscle wasting and another on gut inflammation.

Kepler, NASA, tissue
“Detecting life in an agnostic fashion means not using characteristics particular to Earth life,” said Heather Graham at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Pixabay

Also called a micro-physiological system, a tissue chip needs three main properties, according to Lucie Low, scientific programme manager at National Center for Advancing Translational Sciences in the US.

Also Read: NASA’s Ralph Will Explore Jupiter’s Trojan Asteroids in 2021

“It has to be 3D, because humans are 3D,” she explained.

“It must have multiple, different types of cells, because an organ is made up of all kinds of tissue types. And it must have microfluidic channels, because every single tissue in your body has vasculature to bring in blood and nutrients and to take away detritus,” she added. (IANS)