Thursday October 18, 2018
Home Science & Technology Canadian scie...

Canadian scientists find new way to convert blood cells into sensory neurons

0
//
119
Republish
Reprint

blood-75301_640

By NewsGram Staff Writer

In a revolutionary new study, conducted by a team of stem cell scientists led by Mick Bhatia from the McMaster University, Canada, has discovered how to turn adult human blood cells into brain cells, opening the doors to better understanding of every disease in the body.

According to the research, the team can now directly convert adult human blood cells into both central nervous system (brain and spinal cord) neurons as well as neurons in the peripheral nervous system that are responsible for pain, temperature and itch perception. It directly means that, now, about one million sensory neurons can be produced from a blood sample.

This lead to the conclusion that now doctors can more easily study how a person’s nervous system cells react and respond to various stimuli.

On being asked about the advantages of the new study, Bhatia, Director of the McMaster Stem Cell and Cancer Research Institute, explained, “Now we can take blood samples and make the main cell types of neurological systems – the central nervous system and the peripheral nervous system – in a dish that is specialized for each patient. Nobody has ever done this with adult blood. Ever.”

Bhatia and fellow scientists successfully tested their breakthrough process using both fresh as well as frozen human blood.

Bhatia said, “We can also make central nervous system cells, as the blood to neural conversion technology we developed creates neural stem cells during the process of conversion.”

As per the study, the revolutionary patented direct conversion technology has “broad and immediate applications.” It paves the way for the discovery of new pain drugs that don’t just numb the perception of pain, but actually treat it.

Scientists can actually take a patient’s blood sample, and with its help, they can produce one million sensory neurons that make up the peripheral nerves in short order with this new approach.

The study can help the researchers to think and learn about any disease and improving treatments such as: Why is it that certain people feel pain versus numbness? Is this something genetic? Can the neuropathy that diabetic patients experience be mimicked in a dish?

Bhatia, while explaining the results of the study, said that the research will help to understand the response of cells to different drugs and different stimulation responses, and will allow to provide individualized or personalized medical therapy for patients suffering with neuropathic pain.

Akbar Panju, medical director of the Michael G. DeGroote Institute for Pain Research and Care, said, “This bench to bedside research is very exciting and will have a major impact on the management of neurological diseases, particularly neuropathic pain.”

Click here for reuse options!
Copyright 2015 NewsGram

Next Story

Invasive Species May Not Be All Bad: Scientists

An active debate among biologists about the role of invasive species in a changing world is going on

0
Invasive Species
The invasive European green crab is tearing down ecosystems in Newfoundland and building them up on Cape Cod. VOA

Off the shores of Newfoundland, Canada, an ecosystem is unraveling at the hands (or pincers) of an invasive crab.

Some 1,500 kilometers (930 miles) to the south, the same invasive crab — the European green crab — is helping New England marshes rebuild.

Both cases are featured in a new study that shows how the impacts of these alien invaders are not always straightforward.

Around the world, invasive species are a major threat to many coastal ecosystems and the benefits they provide, from food to clean water. Attitudes among scientists are evolving, however, as more research demonstrates that they occasionally carry a hidden upside.

“It’s complicated,” said Christina Simkanin, a biologist at the Smithsonian Environmental Research Center, “which isn’t a super-satisfying answer if you want a direct, should we keep it or should we not? But it’s the reality.”

Simkanin co-authored a new study showing that on the whole, coastal ecosystems store more carbon when they are overrun by invasive species.

Good news, crab news

Take the contradictory case of the European green crab. These invaders were first spotted in Newfoundland in 2007. Since then, they have devastated eelgrass habitats, digging up native vegetation as they burrow for shelter or dig for prey. Eelgrass is down 50 percent in places the crabs have moved into. Some sites have suffered total collapse.

That’s been devastating for fish that spend their juvenile days among the seagrass. Where the invasive crabs have moved in, the total weight of fish is down tenfold.

The loss of eelgrass also means these underwater meadows soak up less planet-warming carbon dioxide from the atmosphere.

In Cape Cod, Massachusetts, the same crab is having the opposite impact.

Off the coast of New England, fishermen have caught too many striped bass and blue crabs. These species used to keep native crab populations in check. Without predators to hold them back, native crabs are devouring the marshes.

But the invasive European green crab pushes native crabs out of their burrows. Under pressure from the invader, native crabs are eating less marsh grass. Marshes are recovering, and their carbon storage capacity is growing with them.

Invasive species
In this May 8, 2016 photo, eelgrass grows in sediment at Lowell’s Cove in Harpswell, Maine. VOA

Carbon repositories

Simkanin and colleagues compiled these studies and more than 100 others to see whether the net impact on carbon storage has been positive or negative.

They found that the ones overtaken by invasive species held about 40 percent more carbon than intact habitats.

They were taken by surprise, she said, because “non-native species are thought of as being negative so often. And they do have detrimental impacts. But in this case, they seem to be storing carbon quicker.”

At the Smithsonian Environmental Research Center where she works, the invasive reed Phragmites has been steadily overtaking a marsh scientists are studying.

Phragmites grows much taller, denser and with deeper roots than the native marsh grass it overruns.

But those same traits that make it a powerful invader also mean it stores more carbon than native species.

“Phragmites has been referred to as a Jekyll and Hyde species,” she said.

Not all invaded ecosystems stored more carbon. Invaded seagrass habitats generally lost carbon, and mangroves were basically unchanged. But on balance, gains from marsh invaders outweighed the others.

Invasive species
Phragmites plants growing on Staten Island draft in a breeze in the Oakwood Beach neighborhood of Staten Island. VOA

Not a lot of generalities

To be clear, Simkanin said the study is not suggesting it’s always better to let the invaders take over; but, it reflects an active debate among biologists about the role of invasive species in a changing world.

“One of the difficult things in the field of invasion biology is, there aren’t a lot of generalities,” said Brown University conservation biologist Dov Sax, who was not involved with the research. “There’s a lot of nuance.”

The prevailing view among biologists is that non-native species should be presumed to be destructive unless proven otherwise.

When 19 biologists wrote an article in 2011 challenging that view, titled, “Don’t judge species on their origins,” it drew a forceful rebuke from 141 other experts.

Sax said the argument is likely to become more complicated in the future.

Also Read: Climate Change Not A Hoax: Trump

“In a changing world, with a rapidly changing climate, we do expect there to be lots of cases where natives will no longer be as successful in a region. And some of the non-natives might actually step in and play some of those ecosystem services roles that we might want,” he said.

“In that context, what do we do? I definitely don’t have all the answers.” (VOA)