Wednesday November 22, 2017
Home Science & Technology Dwarf planet ...

Dwarf planet Ceres hosts an unexpectedly young cryovolcano, says NASA’s Dawn mission images

The cryovolcanic formation on Ceres is named Ahuna Mons

0
165
Young cryovolcano on dwarf planet Ceres. Image source: IANS

Washington, September 2, 2016 :  The dwarf planet Ceres hosts an unexpectedly young cryovolcano, analysis of images from NASA’s Dawn mission has revealed. Instead of molten rock, salty-mud volcanoes, or Cryovolcanoes, release frigid, salty water sometimes mixed with mud. The cryovolcanic formation on Ceres is named Ahuna Mons.

“Ahuna Mons is evidence of an unusual type of volcanism, involving salty water and mud, at work on Ceres,” said study lead author Ottaviano Ruesch of NASA’s Goddard Space Flight Center, Greenbelt, Maryland, and the Universities Space Research Association in Washington, DC. ”Geologic activity was discussed and debated among scientists: now we finally have observations testifying to its occurrence,” Ruesch noted.

Follow NewsGram on Twitter

Although the volcano is not active now, the team was surprised that it appears geologically recent. Young volcanism on an isolated dwarf planet is a surprise, as usually only planets, or satellites orbiting around them, have volcanism.  Also, volcanic eruptions require bodies to be rocky, like Earth or Mars, or icy, like Saturn’s moon Enceladus.

Ceres is made of salts, muddy rocks and water ice: exotic and unexpected ingredients for volcanism. Ahuna Mons on Ceres indicates such physical and chemical limitations to volcanism are only apparent. As a consequence, volcanism might be more widespread than previously thought.

“The Ahuna Mons cryovolcano allows us to see inside Ceres,” Ruesch said. ”The same process might happen on other dwarf planets like Pluto,” Ruesch noted. The team used images and 3-D terrain maps from the Dawn mission to analyse the shape of Ahuna Mons. They compared features and models of known mountain-building processes on Earth and Mars to the features found on Ahuna Mons.

Follow NewsGram on Facebook

According to the research, published in the journal Science, it is the combination of features that makes the case for a volcanic dome. For example, the summit of Ahuna Mons has cracks like those seen in volcanic domes when they expand. Also, the slopes have lines that resemble those formed by rockfalls, and the steep flanks surrounding the dome could be formed by piles of debris. The mountain’s appearance also indicates it is young on a geological timescale. Surface features on planets with little or no atmosphere like Ceres get eroded by asteroid and meteoroid impacts and take on a soft, rounded appearance.

“We’re confident that Ahuna Mons formed within the last billion years, and possibly within a few hundred million years,” Ruesch said. This is relatively new geologically, given that our solar system is about 4.5 billion years old. ”Ahuna Mons is telling us that Ceres still had enough heat to produce a relatively recent cryovolcano,” Ruesch said. ”There is nothing quite like Ahuna Mons in the solar system,” said co-author on the paper Lucy McFadden of NASA Goddard Space Flight Center. ”It’s the first cryovolcano we’ve seen that was produced by a brine and clay mix,” McFadden noted. (IANS)

Next Story

NASA’s human ‘computer’ is still working at age 80

Sue Finely calculated rocket trajectories by hand

0
33
Sue Finley still works at NASA
Sue Finley, 80, is still working at NASA's Jet Propulsion Laboratory in Pasadena, California. She started there in 1958 as a human "computer," calculating trajectories for rockets. VOA

Sue Finley, now 80 years old and NASA’s longest-serving female employee, recalls her early days with the space agency when she worked as a human “computer,” calculating rocket trajectories by hand at a time when computers were huge and expensive to operate.

Finley arrived at Jet Propulsion Laboratory (JPL) in Pasadena, California, in January 1958, one week before the U.S. Army launched Explorer 1, America’s first earth satellite.

“It was a very big deal,” she recalls of the launch, a response to the launches a few months earlier of the first satellites, Sputnik 1 and 2, from the former Soviet Union.

She was at JPL for Pioneer 1, the first satellite sent aloft by the newly formed National Aeronautics and Space Administration (NASA) in late 1958, which marked the beginning of the international space race.

Unmanned space probes

Since then, Finley has had a role in nearly every U.S. unmanned space probe, and some missions of other nations.

There were failures to overcome and spectacular successes, but always new goals as scientists expanded our knowledge of the earth and solar system.

“We were certainly proud,” she says of NASA accomplishments, “but you just go to the next thing.”

Finley has been through several career changes with the space agency, one of the most important when NASA phased out human computers, moving, initially, to simple electronic versions.

“We got little tiny computers,” she recalls. “One I had 16 wires, jumper cables to code with. One had 10 pegboards that you programmed with.”

As modern computers took over navigational tasks, Finley developed and tested software as a subsystem engineer.

Among her career highlights: the Vega mission, a Soviet-French collaboration with Venus, and Halley’s Comet, which received navigational help from NASA and dropped balloons into the atmosphere of Venus.

She had to change the software for the antenna that tracked the mission, “and it worked,” Finley recalls. “Everything worked. That’s what was so exciting!”

Finley has worked since 1980 on NASA’s Deep Space Network, which coordinates satellite facilities in California, Spain and Australia that allow communication with space probes.

Highlights of NASA career

Career highlights include developing software that generates audio tones sent back from spacecraft, informing engineers on the ground what is happening in space. It was first developed for the Mars missions.

Each tone has a meaning that communicates data, noted one of Finley’s colleagues, Stephen Lichten.

“If a parachute opened, it would send a tone,” Lichten, manager for special projects for the Deep Space Network, said.

“The spacecraft lets go of its heat shield, and it would send a different tone, and so engineers like Sue were here listening for those special frequencies which told them the spacecraft was telling them what it has just done,” he said.

He notes that Finley also helped develop communication arrays that combine multiple antennas to act in unison and other advances that now crucial to space missions.

Lichten once shared an office with Finley and says she inspired her younger colleagues.

“There was a parade of people coming in constantly, to ask her advice, to ask her questions,” he recalls. “This was during the Venus balloon mission days and I realized that Sue was regarded as sort of a guru at JPL.”

Finley has been involved with nearly every advance in space communications in recent decades, and she continues her work today, Lichten said.

There are many more women at NASA today than there were when she started, and Finley said she tells young women to be inquisitive.

“I tell them to never be afraid to ask questions, never be afraid to say you don’t know,” she said.

After nearly six decades at the space agency, a mother of two grown sons and a mentor to her colleagues, Finley has no plans of retiring.

“There’s nothing else I want to do,” she said. “And so far, they need me.”

As they have since the earliest days of the space agency. (VOA)

Next Story

20 Years of Changing Seasons on Earth Captured into 2½ Minutes by NASA

NASA captured 20 years of changing seasons in a striking new global map of the home planet that shows Earth's fluctuations as seen from space

0
30
The Changing seasons of the Earth
The Changing seasons of the Earth has been captured by NASA. Wikimedia.

NASA captured 20 years of changing seasons on Earth in a striking new global map of the home planet.

The data visualization, released this week, shows Earth’s fluctuations as seen from space.

The polar ice caps and snow cover are shown ebbing and flowing with the seasons. The varying ocean shades of blue, green, red and purple depict the abundance — or lack — of undersea life.

“It’s like watching the Earth breathe. It’s really remarkable,” said NASA oceanographer Jeremy Werdell, who took part in the project.

Two decades — from September 1997 to this past September — are crunched into 2½ minutes of viewing.

Werdell finds the imagery mesmerizing. “It’s like all of my senses are being transported into space, and then you can compress time and rewind it, and just continually watch this kind of visualization,” he said Friday.

Werdell said the visualization shows spring coming earlier and autumn lasting longer in the Northern Hemisphere. Also noticeable to him is the receding of the Arctic ice caps over time — and, though less obvious, the Antarctic, too.

On the sea side, Werdell was struck by “this hugely productive bloom of biology” that exploded in the Pacific along the equator from 1997 to 1998 — when a water-warming El Nino merged into cooling La Nina. This algae bloom is evident by a line of bright green.

In considerably smaller Lake Erie, more and more contaminating algae blooms are apparent — appearing red and yellow.

All this data can provide resources for policymakers as well as commercial fishermen and many others, according to Werdell.

Programmer Alex Kekesi of NASA’s Goddard Space Flight Center in Maryland said it took three months to complete the visualization, using satellite imagery.

Just like our Earth, the visualization will continually change, officials said, as computer systems improve, new remote-sensing satellites are launched and more observations are made. (VOA)

Next Story

NASA: Earth’s Ozone Hole Shrinks to Smallest Since 1988

0
22
NASA
NASA: Earth's Ozone Hole Shrinks to Smallest Since 1988 (VOA)

Washington: The ozone hole over Antarctica shrank to its smallest peak since 1988, NASA said Thursday. The huge hole in Earth’s protective ozone layer reached its maximum this year in September, and this year NASA said it was 7.6 million square miles (19.6 million square kilometers). The hole size shrinks after mid-September.

This year’s maximum hole is more than twice as big as the United States, but it’s 1.3 million square miles smaller than last year and 3.3 million square miles smaller than 2015.

FILE - A false-color view of total ozone over the Antarctic pole is seen in this NASA handout image released Oct. 24, 2012. The purple and blue colors are where there is the least ozone. The average area covered by the Antarctic ozone hole in that year was the second smallest in two decades, at 8.2 million square miles; in September 2017, it was 7.6 million square miles.

[ FILE – A false-color view of total ozone over the Antarctic pole is seen in this NASA handout image released Oct. 24, 2012. The purple and blue colors are where there is the least ozone. The average area covered by the Antarctic ozone hole in that year was the second smallest in two decades, at 8.2 million square miles; in September 2017, it was 7.6 million square miles ].

Paul Newman, chief Earth scientist at NASA’s Goddard Space Flight Center, said stormy conditions in the upper atmosphere warmed the air and kept the chemicals chlorine and bromine from eating ozone. He said scientists haven’t quite figured out why some years are stormier — and have smaller ozone holes — than others.

“It’s really small this year. That’s a good thing,” Newman said.

Newman said this year’s drop is mostly natural but is on top of a trend of smaller steady improvements likely from the banning of ozone-eating chemicals in a 1987 international treaty. The ozone hole hit its highest in 2000 at 11.5 million square miles (29.86 million square kilometers).

Ozone is a colorless combination of three oxygen atoms. High in the atmosphere, about 7 to 25 miles (11 to 40 kilometers) above the Earth, ozone shields Earth from ultraviolet rays that cause skin cancer, crop damage and other problems.

Scientists at the United Nations a few years ago determined that without the 1987 treaty, by 2030 there would have been an extra 2 million skin cancer cases. They said that overall, the ozone layer is beginning to recover because of the phase-out of chemicals used in refrigerants and aerosol cans. (VOA)