Friday June 22, 2018

Plastics Can Be Eaten By Enzymes And Reduce Pollution

The enzyme is able to digest polyethylene terephthalate

0
//
10
Packs of flattened polyethylene terephthalate (or PET) bottles are carried into a depot before being pulverized as part of a recycling process at Tokyo PET Bottle Recycle Co. in Tokyo, Aug. 13, 2002. Researchers in Britain and the United States have engineered an enzyme that breaks down such plastics.
Packs of flattened polyethylene terephthalate (or PET) bottles are carried into a depot before being pulverized as part of a recycling process at Tokyo PET Bottle Recycle Co. in Tokyo, Aug. 13, 2002. Researchers in Britain and the United States have engineered an enzyme that breaks down such plastics. VOA
Republish
Reprint

Scientists in Britain and the United States say they have engineered a plastic-eating enzyme that could help in the fight against pollution.

The enzyme is able to digest polyethylene terephthalate, or PET — a form of plastic patented in the 1940s and now used in millions of tons of plastic bottles. PET plastics can persist for hundreds of years in the environment and currently pollute large areas of land and sea worldwide.

Researchers from Britain’s University of Portsmouth and the U.S. Department of Energy’s National Renewable Energy Laboratory made the discovery while examining the structure of a natural enzyme thought to have evolved in a waste-recycling center in Japan.

Finding that this enzyme was helping a bacteria to break down, or digest, PET plastic, the researchers decided to “tweak” its structure by adding some amino acids, said John McGeehan, a professor at Portsmouth who co-led the work.

This led to a serendipitous change in the enzyme’s actions — allowing its plastic-eating abilities to work faster.

“We’ve made an improved version of the enzyme better than the natural one already,” McGeehan told Reuters in an interview.

“That’s really exciting because that means that there’s potential to optimize the enzyme even further.”

The team, whose finding was published Monday in the Proceedings of the National Academy of Sciences journal, is now working on improving the enzyme further to see if it could be capable of breaking down PET plastics on an industrial scale.

Plastic pollution
Plastic pollution, Pixabay

“It’s well within the possibility that in the coming years we will see an industrially viable process to turn PET, and potentially other [plastics], back into their original building blocks so that they can be sustainably recycled,” McGeehan said.

‘Strong potential’

Independent scientists not directly involved with the research said it was exciting, but cautioned that the enzyme’s development as a potential solution for pollution was still at an early stage.

“Enzymes are non-toxic, biodegradable and can be produced in large amounts by microorganisms,” said Oliver Jones, a Melbourne University chemistry expert. “There is strong potential to use enzyme technology to help with society’s growing waste problem by breaking down some of the most commonly used plastics.”

Douglas Kell, a professor of bioanalytical science at Manchester University, said further rounds of work “should be expected to improve the enzyme yet further.”

Also read: Ayushmann Khurana speaks against plastic pollution

“All told, this advance brings the goal of sustainably recyclable polymers significantly closer,” he added. (VOA)

Click here for reuse options!
Copyright 2018 NewsGram

Next Story

Finally The Cause Of Mysterious Martian Rock Formation Discovered

The new finding add to scientists' understanding of Mars's interior and its past potential for habitability

0
Finally The Cause Of Mysterious Martian Rock Formation Discovered
Finally The Cause Of Mysterious Martian Rock Formation Discovered, flickr

Explosive volcanic eruptions that shot jets of hot ash, rock and gas skyward are the probable source of a mysterious Martian rock formation near the planet’s equator, says a new study.

The Medusae Fossae Formation is a massive, unusual deposit of soft rock with undulating hills and abrupt mesas.

Scientists first observed the Medusae Fossae with NASA’s Mariner spacecraft in the 1960s but were perplexed as to how it formed.

The current study, published in the Journal of Geophysical Research: Planets, suggests the formation was deposited during explosive volcanic eruptions on the Red Planet more than three billion years ago.

The formation is about one-fifth as large as the continental US and 100 times more massive than the largest explosive volcanic deposit on Earth, making it the largest known explosive volcanic deposit in the solar system, according to the study authors.

“This is a massive deposit, not only on a Martian scale, but also in terms of the solar system, because we do not know of any other deposit that is like this,” said study lead author Lujendra Ojha, a planetary scientist at Johns Hopkins University in Baltimore, Maryland, US.

Volcanic eruption
Volcanic eruption, pixabay

The researchers believe that the new finding could add to scientists’ understanding of Mars’s interior and its past potential for habitability.

The eruptions that created the deposit could have spewed massive amounts of climate-altering gases into Mars’ atmosphere and ejected enough water to cover Mars in a global ocean more than nine centimeters thick, Ojha said.

Previous radar measurements of Mars’s surface suggested the Medusae Fossae had an unusual composition, but scientists were unable to determine whether it was made of highly porous rock or a mixture of rock and ice.

In the new study, the researchers used gravity data from various Mars orbiter spacecraft to measure the Medusae Fossae’s density for the first time.

They found the rock is unusually porous — it is about two-thirds as dense as the rest of the Martian crust.

They also used radar and gravity data in combination to show the Medusae Fossae’s density cannot be explained by the presence of ice, which is much less dense than rock.

Because the rock is so porous, it had to have been deposited by explosive volcanic eruptions, according to the researchers.

volcano
Active volcano, Pixabay

Greenhouse gases exhaled during the eruptions that spawned the Medusae Fossae could have warmed Mars’s surface enough for water to remain liquid at its surface, but toxic volcanic gases like hydrogen sulfide and sulfur dioxide would have altered the chemistry of Mars’ surface and atmosphere.

Also read: Earthquake Then Volcano, There is No Relief For the Hawaii Residents

Both processes would have affected Mars’ potential for habitability, Ojha said. (IANS)