Monday November 19, 2018
Home India Propose to ha...

Propose to have cities buy power generated from waste: Piyush Goyal

0
//
Republish
Reprint

New Delhi:Local bodies in India will compulsorily need to purchase any electricity generated from city waste as per a proposal under the new tariff policy, Power Minister Piyush Goyal said on Tuesday.

“Besides, every bit of water waste water coming out of cities that can be reprocessed must be compulsorily used by electricity plants, so that the clean water is available for use by citizens,” Goyal said here while giving away the Jubilant Bhartia Foundation’s “Social Entrepreneur of Year-India 2015 award.

These changes, he said, were being proposed were to help India realise its commitments towards tackling climate change.

“Our policy is to encourage the processing of garbage and its conversion to wealth, in this case being electricity,” the minister said.

He told reporters on the sidelines of the event that the new tariff policy would provide incentives to renewable energy projects as well as to those power generation plants that are efficiently using conventional sources of energy.

On resolving the issues of debt-ridden power distribution companies across the country, he said the ministry would soon approach the cabinet with a proposal that has been worked out. He added that the state-run distribution companies’ losses are around Rs.60,000 crore.

Goyal also the government has set a target of replacing regular bulbs with LED bulbs in the next three years, which will save 20,000 MW power and 10,000 crore units of electricity per annum.

(IANS)

Click here for reuse options!
Copyright 2015 NewsGram

Next Story

Body Heat Can Be the Source of Power for Wearable Devices

The aim is to create a product that can be mass produced

0
Heat
Body Heat Converted Into Electricity Powers Health Sensors. (VOA)

There has been an increasing number of wearable heat technologies that have health sensors as medical tools to track a person’s well-being. Many of these devices need to be charged or are battery-powered.

A handful of researchers want to take batteries out of the equation and instead, use waste body heat and convert that into useful electricity to power sensors.

“The average person is something like an 80-watt light bulb,” said Jamie Grunlan, Texas A&M University’s Linda & Ralph Schmidt ’68 Professor in Mechanical Engineering.

Grunlan and his team of researchers are working on using the waste heat the body gives off and converting that into useful electricity. The idea is to create printable, paintable thermoelectric technology that looks like ink and can coat a wearable fabric, similar to dyeing colors onto cloth. Once a person wears the fabric, devices such as health sensors can be powered.

“Our coating coats every fiber within that textile, and so what’s drawing it is simply that textile needs to just be touching the heat source or be close enough to the heat source to be feeling the heat source,” Grunlan said.

Military and sporting goods companies have applications for this type of technology because there is not a large battery pack worn on the body that could be a cause of injury if the person would fall.

“They would love to power health sensors off of body heat and then wirelessly transmit that data to wherever,” Grunlan explained. “You’d like to know if somebody had a concussion or was dehydrated or something like that while it’s happening in real time.”

As a person generates heat, the temperature outside is colder than what’s against the body. The temperature differential generates a voltage.

The goal is to design technology that can get one volt or up to 10 percent efficiency and beyond. So, for example, a researcher would try to get eight watts from a person who is generating 80 watts.

The ingredients in this thermoelectric recipe include carbon nanotubes, polymers and a carbon material called graphene, which is a nanoparticle.

Researchers are trying to perfect the recipe of this ink-like material.

“The one voltage is realistic, but how much material do we need to get that one voltage because we need as little as possible?” said Carolyn Long, a Ph.D. graduate student at Texas A&M.

Also Read about- Google Takes Initiative To Clean And Make Our Planet Healthy

“So, different polymers, different amounts of the multi-walled or double-walled nanotubes, adding the graphene, which order it needs to go in exactly to create the best pathway for the electrons for the thermoelectric material,” said Long of the various experiments she and her lab mates have conducted.

The aim is to create a product that can be mass produced.

“It will happen. It’s not will it happen. It’s when. Is it a year, or is it five years?” Grunlan said.

That will depend on how much funding and manpower is available to make this technology a reality. (VOA)