Tuesday April 24, 2018

Australian university research holds out hope for thalassemia patients

UNSW is home to more than 52,000 students from nearly 130 countries

0
//
19
There are 29 types of blood groups in reality.
There are 29 types of blood groups in reality.
Republish
Reprint

Researchers at the University of New South Wales (UNSW) in Sydney, Australia, have used CRISPR gene editing technology to introduce beneficial natural mutations into blood cells to boost production of foetal haemoglobin.

The method could lead to new therapies for sickle cell anaemia and other blood disorders, says the university. The research solves a 50-year-old mystery about how these mutations — which are naturally carried by a small percentage of people — operate and alter the expression of human genes.

A total of 100 men had serum levels indicative of hyponatremia. Wikimedia Commons
People with thalassemia have defective adult haemoglobin. Wikimedia Commons

The details of the study, carried out by an international team led by UNSW scientist Professor Merlin Crossley, is published in the journal Nature Genetics. Genome editing or gene editing give scientists the ability to change an organism’s DNA. These technologies allow genetic material to be added, removed or altered at particular locations in the genome.

“Our new approach can be seen as a forerunner to ‘organic gene therapy’ for a range of common inherited blood disorders including beta thalassemia and sickle cell anaemia,” said Professor Crossley, who is also UNSW Deputy Vice-Chancellor Academic.

“It is organic because no new DNA is introduced into the cells. Rather, we engineer in naturally occurring, benign mutations that are known to be beneficial to people with these conditions. It should prove to be a safe and effective therapy, although more research would be needed to scale the processes up into effective treatments,” he added.

Also Read: iPhone app measured blood flow better in cardiac assessment

People with thalassemia or sickle-cell anaemia have defective adult haemoglobin — the vital molecule that picks up oxygen in the lungs and transports it around the body — and require life-long treatment with blood transfusions and medications.

According to UNSW, it has engaged in a series of initiatives with the Indian government, higher education institutions, and corporations for sharing and transfer of its vast pool of tech expertise. This sets UNSW apart from host of other institutions that see India as a one-way street to train Indian students. UNSW is home to more than 52,000 students from nearly 130 countries. IANS

Click here for reuse options!
Copyright 2018 NewsGram

Next Story

Stars’ ‘DNA’ could help scientists find Sun’s lost siblings

Unfortunately, astronomers cannot collect the DNA of a star with a mouth swab but instead use the starlight, with a technique called spectroscopy

0
//
12
UFO religion as a concept is now becoming a part of popular understanding.
Countless galaxies exist in the universe, each hiding secrets that humankind is yet to unearth. Pixabay

With the aim to find the lost siblings of the Sun, now scattered across the sky, a team of astronomers has collected the “DNA” of more than 340,000 stars in the Milky Way.

The “DNA” can help trace the ancestry of stars, showing astronomers how the universe went from having only hydrogen and helium — just after the Big Bang — to being filled today with all the elements we have here on Earth that are necessary for life.

Little Cub galaxy
Scientists to find sun’s lost siblings. Wikimedia Commons

The research, detailed in the journal Monthly Notices of the Royal Astronomical Society, is based on the Galactic Archaeology survey, called GALAH, launched in late 2013 as part of a quest to uncover the formulation and evolution of galaxies. When complete, GALAH will investigate more than a million stars.

The GALAH survey used the HERMES spectrograph at the Australian Astronomical Observatory’s (AAO) 3.9-metre Anglo-Australian Telescope near Coonabarabran in New South Wales to collect spectra for the 340,000 stars. “No other survey has been able to measure as many elements for as many stars as GALAH,” said Gayandhi De Silva of the University of Sydney and AAO.

Also Read: Next Planet-Hunting Mission Of NASA Postponed

“This data will enable such discoveries as the original star clusters of the Galaxy, including the Sun’s birth cluster and solar siblings — there is no other dataset like this ever collected anywhere else in the world,” De Silva said.

The Sun, like all stars, was born in a group or cluster of thousands of stars, explained Sarah Martell from the University of New South Wales (UNSW) Sydney who leads the GALAH survey observations. “Every star in that cluster will have the same chemical composition, or DNA – these clusters are quickly pulled apart by our Milky Way Galaxy and are now scattered across the sky,” Martell said.

Black hole in milky way
Scientists are collecting DNA of stars. VOA

“The GALAH team’s aim is to make DNA matches between stars to find their long-lost sisters and brothers,” she added. For each star, this DNA is the amount they contain of each of nearly two dozen chemical elements such as oxygen, aluminium and iron.

Unfortunately, astronomers cannot collect the DNA of a star with a mouth swab but instead use the starlight, with a technique called spectroscopy. The light from the star is collected by the telescope and then passed through an instrument called a spectrograph, which splits the light into detailed rainbows, or spectra. IANS