Friday March 23, 2018
Home Science & Technology Chandra X-ray...

Chandra X-ray Observatory image reveals growth of Black Holes over Billions of Years: NASA

NASA, spacecraft
NASA plans to Crash a Refrigerator-Sized Spacecraft. VOA

Washington, Jan 6, 2017: NASA said its Chandra X-ray Observatory has obtained an image that gives astronomers the best look yet at the growth of black holes over billions of years beginning soon after the Big Bang.

This is the deepest X-ray image ever obtained, collected with about eleven and a half weeks of Chandra observing time, the US space agency said in a statement.

NewsGram brings to you current foreign news from all over the world.

The image comes from what is known as the Chandra Deep Field-South. The central region of the image contains the highest concentration of supermassive black holes ever seen.

“With this one amazing picture, we can explore the earliest days of black holes in the universe and see how they change over billions of years,” said Pennsylvania State University’s Niel Brandt, who led a team of astronomers studying the deep image.

About 70 per cent of the objects in the new image are supermassive black holes, which may range in mass from about 100,000 to 10 billion times the mass of the Sun.

NewsGram brings to you top news around the world today.

Gas falling towards these black holes becomes much hotter as it approaches the event horizon, or point of no return, producing bright X-ray emission.

“It can be very difficult to detect black holes in the early Universe because they are so far away and they only produce radiation if they’re actively pulling in matter,” team member Bin Luo of Nanjing University in China noted.

“But by staring long enough with Chandra, we can find and study large numbers of growing black holes, some of which appear not long after the Big Bang,” Luo added.

The new ultra-deep X-ray image allows scientists to explore ideas about how supermassive black holes grew about one to two billion years after the Big Bang.

Using these data, the researchers showed that these black holes in the early universe grow mostly in bursts, rather than via the slow accumulation of matter.

Check out NewsGram for latest international news updates.

The scientists also found hints that the seeds for supermassive black holes may be “heavy” with masses about 10,000 to 100,000 times that of the Sun, rather than light seeds with about 100 times the Sun’s mass.

This addresses an important mystery in astrophysics about how these objects can grow so quickly to reach masses of about a billion times the Sun in the early universe.

For the study, the team combined the Chandra X-ray data with very deep Hubble Space Telescope data over the same patch of sky.

These results were presented at the 229th meeting of the American Astronomical Society meeting in Grapevine, Texas. (IANS)

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

NASA’s instrument to measure Sun’s energy

For instance, spectral irradiance measurements of the Sun's ultraviolet radiation are critical to understanding the ozone layer -- Earth's natural sunscreen

NASA to release two missions focused on moon soon in 2022. Pixabay
NASA's new instrument can measure incoming solar energy. Pixabay
  • NASA’s new instrument can measure Sun’s incoming energy
  • The instrument is called Total and Spectral Solar Irradiance Sensor (TSIS-1)
  • This can help bring in an energy revolution in future

To continue long-term measurements of the Sun’s incoming energy, NASA has powered on a new instrument installed on the International Space Station (ISS).

Solar energy is one of the biggest energy sources in the world.

The instrument, Total and Spectral solar Irradiance Sensor (TSIS-1), became fully operational with all instruments collecting science data as of this March, NASA said.

“TSIS-1 extends a long data record that helps us understand the Sun’s influence on Earth’s radiation budget, ozone layer, atmospheric circulation, and ecosystems, and the effects that solar variability has on the Earth system and climate change,” said Dong Wu, TSIS-1 project scientist at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. TSIS-1 studies the total amount of light energy emitted by the Sun using the Total Irradiance Monitor, one of two sensors onboard.

Also Read: Why is the Sun’s atmosphere much hotter than its surface

This sensor’s data will give scientists a better understanding of Earth’s primary energy supply and provide information to help improve models simulating the planet’s climate.

The second onboard sensor, called the Spectral Irradiance Monitor, measures how the Sun’s energy is distributed over the ultraviolet, visible and infrared regions of light. Measuring the distribution of the Sun’s energy is important because each wavelength of light interacts with the Earth’s atmosphere differently.

Measuring solar energy is one big technological developement. Pixabay

For instance, spectral irradiance measurements of the Sun’s ultraviolet radiation are critical to understanding the ozone layer — Earth’s natural sunscreen that protects life from harmful radiation.

“All systems are operating within their expected ranges,” said Peter Pilewskie, TSIS-1 lead scientist at the University of Colorado Laboratory for Atmospheric and Space Physics in the US. IANS