Saturday December 14, 2019
Home Science & Technology Exoplanet may...

Exoplanet may be brimming with oxygen but not life, say Researchers

Astronomer Laura Schaefer and her colleagues examined the question of what would happen to GJ 1132b over time if it began with a steamy, water-rich atmosphere

0
//
Little Cub galaxy
The Little Cub galaxy - so called because it sits in the Ursa Major or Great Bear constellation. Galaxy (Representational Image). Wikimedia

New York, August 19: A Venus-like exoplanet may have an atmosphere with oxygen but not life, researchers report, adding that their magma ocean-atmosphere model can help solve the puzzle of how Venus evolved over time.

The distant planet GJ 1132b is located just 39 light-years from Earth. It might have an atmosphere despite being baked to a temperature of around 450 degrees Fahrenheit.

“This planet might be the first time we detect oxygen on a rocky planet outside the solar system,” said study co-author Robin Wordsworth from Harvard Paulson School of Engineering and Applied Sciences.

Harvard Smithsonian Center for Astrophysics, Cambridge. Image source: Wikimedia Commons
Harvard-Smithsonian Center for Astrophysics, Cambridge. Image source: Wikimedia Commons

Astronomer Laura Schaefer from Harvard-Smithsonian Center for Astrophysics and her colleagues examined the question of what would happen to GJ 1132b over time if it began with a steamy, water-rich atmosphere.

Follow NewsGram on Twitter

Orbiting so close to its star, at a distance of just 1.4 million miles, the planet is flooded with ultraviolet or UV light.

UV light breaks apart water molecules into hydrogen and oxygen, both of which then can be lost into space.

However, since hydrogen is lighter it escapes more readily, while oxygen lingers behind.

“On cooler planets, oxygen could be a sign of alien life and habitability. But on a hot planet like GJ 1132b, it’s a sign of the exact opposite — a planet that’s being baked and sterilised,” said Schaefer in a statement.

Since water vapour is a greenhouse gas, the planet would have a strong greenhouse effect, amplifying the star’s already intense heat.

As a result, its surface could stay molten for millions of years.

If any oxygen does still cling to GJ 1132b, next-generation telescopes like the Giant Magellan Telescope and James Webb Space Telescope may be able to detect and analyse it.

Follow NewsGram on Facebook

Venus probably began with Earth-like amounts of water, which would have been broken apart by sunlight.

Yet it shows few signs of lingering oxygen. The missing oxygen problem continues to baffle astronomers. (IANS)

ALSO READ:

Next Story

Scientists Create Map of Wind Circulation in the Upper Atmosphere of Mars

Scientists map winds in Mars' upper atmosphere for first time

0
Mars
The new map of Mars winds helps scientists to better understand the workings of the Martian climate. (Representational image). Pixabay

Using data from NASA’s MAVEN spacecraft, researchers have created the first-ever map of wind circulation in the upper atmosphere of Mars.

The new map of Mars winds helps scientists to better understand the workings of the Martian climate, giving them a more accurate picture of its ancient past and its ongoing evolution.

“The observed global circulation provides critical inputs needed to constrain global atmospheric models,” said Mehdi Benna of NASA’s Goddard Space Flight Center in Greenbelt, Maryland.

“These are the same models that are used to extrapolate the state of the Martian climate into the distant past,” added Benna in the first paper published in the journal Science.

MAVEN (Mars Atmosphere and Volatile EvolutioN mission) celebrated the five-year anniversary of its entrance into orbit around Mars on September 21.

Mission Mars
The winds observed in the Martian upper atmosphere are sometimes similar to what we see in global model simulations. (Representational image). Pixabay

The primary scientific goal of the mission is to study what is left of Mars’ atmosphere to determine how, in the distant past, an ocean-covered and potentially habitable Mars became the dry and desolate place it is today.

“The winds observed in the Martian upper atmosphere are sometimes similar to what we see in global model simulations, but other times can be quite different,” said Kali Roeten of University of Michigan.

“These winds can also be highly variable on the timescale of hours, yet in other cases, are consistent throughout the observation period, said Roeten in the second paper published in the Journal of Geophysical Research-Planets.

Upper atmospheric winds on Earth have already been mapped in detail.

Winds drive a series of processes in the atmosphere that can affect the propagation of radio waves, which are crucial for communications purposes for those on the surface, and the prediction of paths satellites will take in their orbit around Earth.

Mapping Martian winds, therefore, is a crucial step towards understanding characteristics of extraterrestrial atmospheres beyond what we know about processes on Earth.

Also Read- Google Assistant Rolls out Interpreter Mode for Smartphones

The upper atmospheric winds on both Earth and Mars are in the planets’ respective thermospheres, which are areas where temperature increases with height.

This discovery was the first detection of topography-induced gravity wave ripples in the thermosphere of any planet, even Earth. (IANS)