Wednesday May 22, 2019
Home Science & Technology Human Skin Re...

Human Skin Replacement? 3-D printers have moved from plastic to metal, now to Human Tissue

The skin bioprinter is the product of a collaboration of scientists from Spain's Universidad Carlos III de Madrid

FILE - The hands of a burn victim are pictured after she received skin grafts. VOA

Jan 26, 2017: 3-D printers have moved from plastic to metal, and now to human tissue.

Spanish scientists report they have designed a machine capable of printing a replacement for human skin using special bio-ink consisting of human skin cells and other biological components.

The printer is in the research stage, but its designers hope it will eventually be approved for treating burn patients, as well as for replacing animals in the testing of cosmetic and pharmaceutical products.

NewsGram brings to you current foreign news from all over the world.

According to the scientific report, published in the online journal Biofabrication, the printed skin has all the essential parts of the natural skin, such as the dermis (the layer of tissue that contains capillaries, nerve endings and other structures), the epidermis (the layer of cells atop the dermis), the stratum corneum (the horny outer layer), and even the collagen, which gives skin its elasticity and mechanical strength.

The skin bioprinter is the product of a collaboration of scientists from Spain’s Universidad Carlos III de Madrid, the Center for Energy, Environmental and Technological Research in Madrid, Madrid’s General Gregorio Maranon Hospital and Spanish bioengineering firm BioDan Group.

Meanwhile, Chinese biotechnology firm Sichuan Revotek says it has successfully implanted 3-D-printed blood vessels into rhesus monkeys, in a bid to develop technology for mass-printing of human organs. (VOA)

Next Story

NASA to Send Organ-on-Chips To Test Human Tissue Health in Space

Called a micro-physiological system, a tissue chip needs three main properties

NASA, tissue
US shutdown delays space missions but NASA not grounded: Report,

NASA is planning to send small devices containing human cells in a 3D matrix — known as tissue chips or organs-on-chips — to the International Space Station (ISS) to test how they respond to stress, drugs and genetic changes.

Made of flexible plastic, tissue chips have ports and channels to provide nutrients and oxygen to the cells inside them.

The “Tissue Chips in Space” initiative seeks to better understand the role of microgravity on human health and disease and to translate that understanding to improved human health on Earth, NASA said.

“Spaceflight causes many significant changes in the human body,” said Liz Warren, Associate Program Scientist at the Center for the Advancement of Science in Space (CASIS) in the US.

Kepler, NASA, tissue
This illustration made available by NASA shows the Kepler Space Telescope. As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. VOA

“We expect tissue chips in space to behave much like an astronaut’s body, experiencing the same kind of rapid change,” Warren said.

The US space agency is planning the investigations in collaboration with CASIS and the National Center for Advancing Translational Sciences (NCATS) at the National Institutes for Health (NIH).

Many of the changes in the human body caused by microgravity resemble the onset and progression of diseases associated with ageing on Earth, such as bone and muscle loss. But the space-related changes occur much faster.

That means scientists may be able to use tissue chips in space to model changes that might take months or years to happen on Earth.

Parkinson's Disease, Kepler, NASA, tissue
A researcher takes a tissue sample from a human brain at the Multiple Sclerosis and Parkinson’s UK Tissue Bank, VOA

This first phase of Tissue Chips in Space includes five investigations. An investigation of immune system ageing is planned for launch on the SpaceX CRS-16 flight, scheduled for this year.

The other four, scheduled to launch on SpaceX CRS-17 or subsequent flights, include lung host defense, the blood-brain barrier, musculoskeletal disease and kidney function.

In addition, four more projects are scheduled for launch in summer 2020, including two on engineered heart tissue to understand cardiovascular health, one on muscle wasting and another on gut inflammation.

Kepler, NASA, tissue
“Detecting life in an agnostic fashion means not using characteristics particular to Earth life,” said Heather Graham at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Pixabay

Also called a micro-physiological system, a tissue chip needs three main properties, according to Lucie Low, scientific programme manager at National Center for Advancing Translational Sciences in the US.

Also Read: NASA’s Ralph Will Explore Jupiter’s Trojan Asteroids in 2021

“It has to be 3D, because humans are 3D,” she explained.

“It must have multiple, different types of cells, because an organ is made up of all kinds of tissue types. And it must have microfluidic channels, because every single tissue in your body has vasculature to bring in blood and nutrients and to take away detritus,” she added. (IANS)