Tuesday November 13, 2018
Home Lead Story Jupiter&#8217...

Jupiter’s Great Red Spot grows taller: NASA

Jupiter's Great Red Spot, which has been shrinking for a century and a half, seems to be growing taller as it gets smaller

0
//
NASA Seeks Partnership With US Industry to Develop First Gateway Element
NASA, Pixabay
Republish
Reprint

Jupiter’s Great Red Spot, which has been shrinking for a century and a half, seems to be growing taller as it gets smaller, NASA scientists have found.

The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter, producing an anti-cyclonic storm 22 degree south of the planet’s equator.

Space playlist for Halloween
Jupiter’s red spot is becoming longer. Pixabay.

The findings, published in the Astronomical Journal, indicate that the Great Red Spot recently started to drift westward faster than before. Historically, it’s been assumed that this drift is more or less constant.

The study confirms that the storm has been decreasing in length overall since 1878 and is big enough to accommodate just over one Earth at this point. But the historical record indicates the area of the spot grew temporarily in the 1920s.

“Storms are dynamic, and that’s what we see with the Great Red Spot. It’s constantly changing in size and shape, and its winds shift, as well,” said Amy Simon, an expert in planetary atmospheres at NASA’s Goddard Space Flight Centre in Maryland.

Also Read: NASA Reveals Plans For Future Missions To Moon

“There is evidence in the archived observations that the Great Red Spot has grown and shrunk over time,” added Reta Beebe, Professor at New Mexico State University in Las Cruces. “However, the storm is quite small now, and it’s been a long time since it last grew,” Beebe said.

Because the storm has been contracting, the researchers expected to find the already-powerful internal winds becoming even stronger. However, instead of spinning faster, the storm appears to be forced to stretch up. The change in height is small relative to the area that the storm covers, but it’s still noticeable.

Further, the Great Red Spot’s colour is also deepening, becoming intensely orange since 2014, the researchers observed. While the researchers are not sure why that’s happening, it’s possible that the chemicals which colour the storm are being carried higher into the atmosphere as the spot stretches up.

Jupiter’s red spot is decreasing in width. NASA

At higher altitudes, the chemicals would be subjected to more UltraViolet radiation and would take on a deeper colour. Once big enough to swallow three Earths with room to spare, the mystery surrounding Great Red Spot seems to deepen as the iconic storm contracts.

Researchers do not know whether the spot will shrink a bit more and then stabilise, or break apart completely. “If the trends we see in the Great Red Spot continue, the next five to 10 years could be very interesting from a dynamical point of view,” the researchers said.

“We could see rapid changes in the storm’s physical appearance and behaviour, and maybe the red spot will end up being not so great after all,” they added. IANS

Click here for reuse options!
Copyright 2018 NewsGram

Next Story

NASA to Send Organ-on-Chips To Test Human Tissue Health in Space

Called a micro-physiological system, a tissue chip needs three main properties

0
NASA, tissue
NASA to send tissue chips to space to test human health, genetic changes. Flcikr

NASA is planning to send small devices containing human cells in a 3D matrix — known as tissue chips or organs-on-chips — to the International Space Station (ISS) to test how they respond to stress, drugs and genetic changes.

Made of flexible plastic, tissue chips have ports and channels to provide nutrients and oxygen to the cells inside them.

The “Tissue Chips in Space” initiative seeks to better understand the role of microgravity on human health and disease and to translate that understanding to improved human health on Earth, NASA said.

“Spaceflight causes many significant changes in the human body,” said Liz Warren, Associate Program Scientist at the Center for the Advancement of Science in Space (CASIS) in the US.

Kepler, NASA, tissue
This illustration made available by NASA shows the Kepler Space Telescope. As of October 2018, the planet-hunting spacecraft has been in space for nearly a decade. VOA

“We expect tissue chips in space to behave much like an astronaut’s body, experiencing the same kind of rapid change,” Warren said.

The US space agency is planning the investigations in collaboration with CASIS and the National Center for Advancing Translational Sciences (NCATS) at the National Institutes for Health (NIH).

Many of the changes in the human body caused by microgravity resemble the onset and progression of diseases associated with ageing on Earth, such as bone and muscle loss. But the space-related changes occur much faster.

That means scientists may be able to use tissue chips in space to model changes that might take months or years to happen on Earth.

Parkinson's Disease, Kepler, NASA, tissue
A researcher takes a tissue sample from a human brain at the Multiple Sclerosis and Parkinson’s UK Tissue Bank, VOA

This first phase of Tissue Chips in Space includes five investigations. An investigation of immune system ageing is planned for launch on the SpaceX CRS-16 flight, scheduled for this year.

The other four, scheduled to launch on SpaceX CRS-17 or subsequent flights, include lung host defense, the blood-brain barrier, musculoskeletal disease and kidney function.

In addition, four more projects are scheduled for launch in summer 2020, including two on engineered heart tissue to understand cardiovascular health, one on muscle wasting and another on gut inflammation.

Kepler, NASA, tissue
“Detecting life in an agnostic fashion means not using characteristics particular to Earth life,” said Heather Graham at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. Pixabay

Also called a micro-physiological system, a tissue chip needs three main properties, according to Lucie Low, scientific programme manager at National Center for Advancing Translational Sciences in the US.

Also Read: NASA’s Ralph Will Explore Jupiter’s Trojan Asteroids in 2021

“It has to be 3D, because humans are 3D,” she explained.

“It must have multiple, different types of cells, because an organ is made up of all kinds of tissue types. And it must have microfluidic channels, because every single tissue in your body has vasculature to bring in blood and nutrients and to take away detritus,” she added. (IANS)