Tuesday October 23, 2018

Checkpoint Protein (CHK2) Inhibitor Drug to Protect Women’s Infertility Post Cancer Treatments

0
//
81
Republish
Reprint

Sep 02, 2017: An existing drug may one day protect premenopausal women from infertility that commonly follows cancer treatments, new research has found.

Women who are treated for cancer with radiation or certain chemotherapy drugs are commonly rendered sterile.

Women are born with a lifetime reserve of oocytes, or immature eggs, but those oocytes are among the most sensitive cells in the body and may be wiped out by such cancer treatments.

The new findings, published in the journal Genetics, raises hope of curbing infertility from cancer treatment.

The study builds on his 2014 research that identified a so-called checkpoint protein (CHK2) that becomes activated when oocytes are damaged by radiation.

Checkpoint protein functions in a pathway that eliminates oocytes with DNA damage, a natural function to protect against giving birth to offspring bearing new mutations.

When the researchers irradiated mice lacking the CHK2 gene, the oocytes survived, eventually repaired the DNA damage, and the mice gave birth to healthy pups.

Also Read: Treatment with Uterine Fibroids helps to restore Fertility in Women

The new study explored whether the checkpoint 2 pathway could be chemically inhibited.

“It turns out there were pre-existing CHK2 inhibitor drugs that were developed, ironically enough, for cancer treatment, but they turned out not to be very useful for treating cancer,” said study senior author John Schimenti, Professor at Cornell University in New York.

“By giving mice the inhibitor drug, a small molecule, it essentially mimicked the knockout of the checkpoint gene,” first author Vera Rinaldi, a graduate student in Schimenti’s lab, said.

By inhibiting the checkpoint pathway, the oocytes were not killed by radiation and remained fertile, enabling birth of normal pups, the study said.

“While humans and mice have different physiologies, and there is much work to be done to determine safe and effective dosages for people, it is clear that we have the proof of principle for this approach,” Schimenti said. (IANS)

Click here for reuse options!
Copyright 2017 NewsGram

Next Story

Novel Synthetic DNA Vaccines Safe To Use Against Ebola: Scientists

While there are no licensed treatments available for Ebola virus disease yet, multiple experimental therapies are being developed.

0
Ebola, UNICEF. congo, DNA
A Congolese health worker administers Ebola vaccine to a woman who had contact with an Ebola sufferer in the village of Mangina in North Kivu province of the Democratic Republic of Congo

Scientists, including one of Indian-origin, have found that the novel synthetic DNA vaccine is safe against Ebola virus and offers a long-term alternative to traditional vaccines.

The team, from The Wistar Institute in Philadelphia, US, optimised a shorter, dose-sparing, immunisation regimen and simplified vaccine that can be directly administered into the skin. They targeted a virus surface protein called glycoprotein.

This new approach induced rapid and protective immunity from virus challenges.

Importantly, the approach showed strong immune responses one year after the last dose, supporting the long-term immunogenicity of the vaccine — a particularly challenging area for Ebola vaccines.

Ebola, UNICEF. congo, DNA
A boy runs past a dispenser containing water mixed with disinfectant, east of Mbandaka, DRC. VOA

“Synthetic non-viral based DNA technology allows for rapid vaccine development by delivery directly into the skin, resulting in consistent, potent and rapid immunity compared to traditional vaccine approaches,” said lead researcher David B. Weiner, Director of Wistar’s Vaccine and Immunotherapy Center.

“An anti-Ebola virus DNA vaccine like this may provide an important new tool for protection, and we are excited to see what future studies will unveil,” he added.

In the study, published in the Journal of Infectious Diseases, the team detected antibody levels were equal or higher to those reported for other vaccines currently being evaluated in the clinic.

“The success of intradermal delivery of a low-dose regimen is very encouraging,” said Ami Patel, Ph.D., associate staff scientist in the Weiner Lab. “The ultimate goal of our work is to create effective and safe vaccines that are optimised for field use in at-risk areas.”

Ebola, UNICEF. congo, DNA
Photo taken Sept 9, 2018, shows health workers walking with a boy suspected of having the Ebola virus at an Ebola treatment centre in Beni, Eastern Congo. VOA

Ebola virus disease is a serious and often fatal illness that can cause fever, headache, muscle pain, weakness, fatigue, diarrhoea, vomiting, stomach pain and haemorrhage (severe bleeding).

First discovered in humans in 1976 in the Democratic Republic of the Congo, the largest outbreak occurred in West Africa from 2014 to 2016, which claimed more than 11,000 lives, according to the World Health Organization.

Also Read: Ebola Increases The Number of Orphans in DRC: UNICEF

The death rate is about 50 per cent and the virus is spread by contact with contaminated body fluids, including blood and semen.

While there are no licensed treatments available for Ebola virus disease yet, multiple experimental therapies are being developed. (IANS)