Hydrogen Production: In the absence of air, microorganisms produce hydrogen using an enzyme called [FeFe]-hydrogenase [Pixabay] 
Research

Heat- and Oxygen-Stable Biocatalyst for Hydrogen Production

In the absence of air, microorganisms produce hydrogen using an enzyme called [FeFe]-hydrogenase, one of the most efficient hydrogen-producing biocatalysts known and a promising tool for green hydrogen energy. However, these enzymes are rapidly destroyed when exposed to air, which has so far limited their industrial use.

NewsGram Desk

Hydrogen Production: In the absence of air, microorganisms produce hydrogen using an enzyme called [FeFe]-hydrogenase, one of the most efficient hydrogen-producing biocatalysts known and a promising tool for green hydrogen energy. However, these enzymes are rapidly destroyed when exposed to air, which has so far limited their industrial use. Joint efforts led by scientists from the Photobiotechnology group and the Center for Theoretical Chemistry at Ruhr University Bochum, Germany, isolated a new type of oxygen-stable [FeFe]-hydrogenase and revealed its “tricks” for this oxygen-stability. The results are published in “Journal of American Chemical Society” on April 23, 2025.

A selection from thermophilic bacteria

In the pursuit of highly stable [FeFe]-hydrogenase, the team started to search for [FeFe]-hydrogenases from thermophilic bacteria. Employing bioinformatics tools, they found the thermophilic bacterium Thermosediminibacter oceani that thrive around 70˚C and possesses a potentially interesting [FeFe]-hydrogenase.

Understanding the high oxygen stability

After successful production and isolation of this new [FeFe]-hydrogenase, they observed its good thermostability and unprecedented oxygen-stability – it even survives after several days’ exposure to air. “It is so exciting to see this high stability,” says Subhasri Ghosh, the first author of the study. Using hydrogen production measurements, spectroscopy, site-directed mutagenesis, and machine learning-based structure prediction together with molecular dynamics computer simulations, the researchers gained detailed insights into the oxygen protection mechanism. They found that an additional sulfur-containing amino acid located near the catalytic center is crucial for oxygen stability. “Additionally, a cluster of hydrophobic amino acids influences protein dynamics and helps regulate oxygen resistance”, says Professor Lars Schäfer. “We are positive that some of these findings can be applied to other [FeFe]-hydrogenases and possible help in engineering more oxygen-stable [FeFe]-hydrogenases”, concludes Professor Thomas Happe from the Photobiotechnology group Ruhr University Bochum, who led the study. AlphaGalileo/SP

Yamuna floodwaters swamp Delhi, as river flows at 207.48 metres

Centre Simplifies GST Registration Process for Small and Low-Risk Businesses

GST Reforms to Boost Affordability of Life Saving Drugs, Address Public Health: Pharma Experts

GST on 33 Cancer Drugs, Rare Disease Medicines Slashed to 0 from 12 pc: FM Sitharaman

Can You Rent a Car in Dubai for AED 500 a Month?