Nuclei Spin:- Atomic nuclei come in different shapes, varying from football-like (“prolate”) to pancake-like (“oblate”). [Newswise] 
Research

Resolved: A Long-Debated Anomaly in How Nuclei Spin

Atomic nuclei come in different shapes, varying from football-like (“prolate”) to pancake-like (“oblate”). Prolate and oblate shapes have different moments of inertia. This is a body’s resistance to having its speed of rotation altered by an external force.

NewsGram Desk

Nuclei Spin:- Atomic nuclei come in different shapes, varying from football-like (“prolate”) to pancake-like (“oblate”). Prolate and oblate shapes have different moments of inertia. This is a body’s resistance to having its speed of rotation altered by an external force. Atomic nuclei having different shapes with different moments of inertia implies that it takes different amounts of energy to spin different nuclei.

In previous research, measurements found that for fast rotations, for example in nuclei like neon-20 or chromium-48, the energy for spinning changes unexpectedly. Scientists attributed this to an anomalous increase in the moment of inertia for fast rotations, likely due to the nuclear matter bulging out. Earlier models suggested that fast-rotating nuclei ultimately become spheres, but newer models have found deformed shapes. Now, large-scale simulations of atomic nuclei have revealed surprising new explanations of the elusive physics of fast-spinning nuclei.

The Impact

For the first time in nearly 50 years, scientists accurately calculated the moment of inertia and studied its hypothesized anomalous increase through state-of-the-art simulations of nuclei. The simulations for neon-20 replicate the energy measurements. Remarkably, however, the simulations do not find the anomalous increase. Instead, they reveal a change in the interior of the nucleus. Similar microscopic simulations for chromium-48 confirm this surprising result. Furthermore, the results resolve the long-lasting question of whether a prolate nucleus that starts to quickly spin becomes spherical or oblate. This research shows that several competing shapes emerge, some prolate and some oblate, which on average appear spherical.

Summary

A student in the Research Experiences for Undergraduates program at Louisiana State University (LSU), together with scientists from LSU, San Diego State University, and the Czech Academy of Sciences, precisely studied the shape content of neon-20 using a newly developed first-principles Symmetry-Adapted No-Core Shell Model theory. This framework naturally describes the deformation and cluster substructures of atomic nuclei. The framework achieves solutions that would otherwise be impossible by building blocks respecting an almost perfect symmetry within nuclei. These state-of-the-art nuclear simulations unveil a complex quantum superposition of shapes. This refutes a 50-year-old claim, based on analogy to classical rotating objects, that increasing rotations lead to an increase in the nuclear moment of inertia.

For light nuclei, neon-20 (with 10 protons and 10 neutrons) has been the canonical example of the hypothesized increase of the moment of inertia. In the novel “symmetry-adapted” calculations, the moment of inertia and the nuclear shape and intrinsic structure (see image c in the figure above) change little. Instead, mixing with a nearby nuclear state, which aligns particle spins and combines shapes, changes the energy. Similar calculations for chromium-48 confirm a fast-rotating nucleus that appears nearly spherical, in agreement with some models. This model finds this sphericity is an average from a near-equal mixing of prolate and oblate shapes (see image b in the figure above). This represents a new insight into the physics of fast-rotating nuclei. Newswise/SP

NewsGram Journalism Certification Program



NewsGram invites you to join our exclusive Certification Program designed to help you excel in Journalism and Content Creation!

What You Get:

✅ Author Profile/Byline – Your own author page on NewsGram📝
✅ Certificate – Official recognition of your expertise 🎓
✅ Live Classes – Weekend sessions + One-on-one sessions on weekdays 🎥👨‍🏫
✅ Article Publication – Publish for free under expert mentorship 📰✍️
✅ Freelancing Opportunity – Potential to work with NewsGram in the future 💼🚀


📅 Limited slots available! Take the next step in your career and gain hands-on experience in digital media content writing.


Apply right now with a mail on education@newsgram.com

For more details, see the Course Guide.

Pentagon Warns Microsoft: Company’s Use of China-Based Engineers Was a “Breach of Trust”

Latin American literature contains warnings for American universities that yield to Trump

Pregnant women face tough choices about medication use due to lack of safety data − here’s why medical research cuts will make it worse

Lust and Desire: The Fading Line Between What We Need and What We Want

Ukrainian Authorities Hunt Killer Of Former Parliament Speaker Parubiy